6,461 research outputs found

    Strong correlation effects and optical conductivity in electron doped cuprates

    Full text link
    We demonstrate that most features ascribed to strong correlation effects in various spectroscopies of the cuprates are captured by a calculation of the self-energy incorporating effects of spin and charge fluctuations. The self energy is calculated over the full doping range of electron-doped cuprates from half filling to the overdoped system. The spectral function reveals four subbands, two widely split incoherent bands representing the remnant of the split Hubbard bands, and two additional coherent, spin- and charge-dressed in-gap bands split by a spin-density wave, which collapses in the overdoped regime. The incoherent features persist to high doping, producing a remnant Mott gap in the optical spectra, while transitions between the in-gap states lead to pseudogap features in the mid-infrared.Comment: 5 pages, 4 figure

    Aerosol effects on clouds and precipitation during the 1997 smoke episode in Indonesia

    Get PDF
    In 1997/1998 a severe smoke episode due to extensive biomass burning, especially of peat, was observed over Indonesia. September 1997 was the month with the highest aerosol burden. This month was simulated using the limited area model REMOTE driven at its lateral boundaries by ERA40 reanalysis data. REMOTE was extended by a new convective cloud parameterization mimicking individual clouds competing for instability energy. This allows for the interaction of aerosols, convective clouds and precipitation. Results show that in the monthly mean convective precipitation is diminished at nearly all places with high aerosol loading, but at some areas with high background humidity precipitation from large-scale clouds may over-compensate the loss in convective rainfall. The simulations revealed that both large-scale and convective clouds' microphysics are influenced by aerosols. Since aerosols are washed and rained out by rainfall, high aerosol concentrations can only persist at low rainfall rates. Hence, aerosol concentrations are not independent of the rainfall amount and in the mean the maximum absolute effects on rainfall from large scale clouds are found at intermediate aerosol concentrations. The reason for this behavior is that at high aerosol concentrations rainfall rates are small and consequently also the anomalies are small. For large-scale as well as for convective rain negative and positive anomalies are found for all aerosol concentrations. Negative anomalies dominate and are highly statistically significant especially for convective rainfall since part of the precipitation loss from large-scale clouds is compensated by moisture detrained from the convective clouds. The mean precipitation from large-scale clouds is less reduced (however still statistically significant) than rain from convective clouds. This effect is due to detrainment of cloud water from the less strongly raining convective clouds and because of the generally lower absolute amounts of rainfall from large-scale clouds. With increasing aerosol load both, convective and large scale clouds produce less rain. At very few individual time steps cases were found when polluted convective clouds produced intensified rainfall via mixed phase microphysics. However, these cases are not unequivocal and opposite results were also simulated, indicating that other than aerosol-microphysics effects have important impact on the results. Overall, the introduction of the new cumulus parameterization and aerosol-cloud interaction reduced some of the original REMOTE biases of precipitation patterns and total amount

    Elastic Scattering Susceptibility of the High Temperature Superconductor Bi2Sr2CaCu2O8+x: A Comparison between Real and Momentum Space Photoemission Spectroscopies

    Full text link
    The joint density of states (JDOS) of Bi2Sr2CaCu2O8+x is calculated by evaluating the autocorrelation of the single particle spectral function A(k,omega) measured from angle resolved photoemission spectroscopy (ARPES). These results are compared with Fourier transformed (FT) conductance modulations measured by scanning tunneling microscopy (STM). Good agreement between the two experimental probes is found for two different doping values examined. In addition, by comparing the FT-STM results to the autocorrelated ARPES spectra with different photon polarization, new insight on the form of the STM matrix elements is obtained. This shines new light on unsolved mysteries in the tunneling data.Comment: Revised now available at: Phys. Rev. Lett. 96, 067005 (2006

    Josephson effect in point contacts between ''f-wave'' superconductors

    Get PDF
    A stationary Josephson effect in point contacts between triplet superconductors is analyzed theoretically for most probable models of the order parameter in UPt_{3} and Sr_{2}RuO_{4}. The consequence of misorientation of crystals in superconducting banks on this effect is considered. We show that different models for the order parameter lead to quite different current-phase dependences. For certain angles of misorientation a boundary between superconductors can generate the parallel to surface spontaneous current. In a number of cases the state with a zero Josephson current and minimum of the free energy corresponds to a spontaneous phase difference. This phase difference depends on the misorientation angle and may possess any value. We conclude that experimental investigations of the current-phase dependences of small junctions can be used for determination of the order parameter symmetry in the mentioned above superconductors.Comment: 11 pages, 8 figure

    Quadratic optimal functional quantization of stochastic processes and numerical applications

    Get PDF
    In this paper, we present an overview of the recent developments of functional quantization of stochastic processes, with an emphasis on the quadratic case. Functional quantization is a way to approximate a process, viewed as a Hilbert-valued random variable, using a nearest neighbour projection on a finite codebook. A special emphasis is made on the computational aspects and the numerical applications, in particular the pricing of some path-dependent European options.Comment: 41 page

    Anomalous transport properties of the halfmetallic ferromagnets Co2TiSi, Co2TiGe, and Co2TiSn

    Full text link
    In this work the theoretical and experimental investigations of Co2TiZ (Z = Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfill the Slater-Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting like behavior. A large negative magnetoresistance of 55% is observed for Co2TiSn at room temperature in an applied magnetic field of 4T which is comparable to the large negative magnetoresistances of the manganites. The Seebeck coefficients are negative for all three compounds and reach their maximum values at their respective Curie temperatures and stay almost constant up to 950 K. The highest value achieved is -52muV/K m for Co2TiSn which is large for a metal. The combination of half-metallicity and the constant large Seebeck coefficient over a wide temperature range makes these compounds interesting materials for thermoelectric applications and further spincaloric investigations.Comment: 4 pages 4 figure

    Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions

    Full text link
    Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons to enable measurements of its suppressed decays. Results of a detailed study of the determination of the muon Yukawa coupling at 3 TeV, based on full detector simulation and event reconstruction, are presented. The muon Yukawa coupling can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab. The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy

    Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood lymphocytes to human umbilical vein endothelial cells

    Get PDF
    AbstractThe thiol protease bromelain has been shown to remove T-cell CD44 molecules from lymphocytes and to affect T-cell activation. We investigated the effect of a highly purified bromelain protease F9 (F9) on the adhesion of peripheral blood lymphocytes (PBL) to human umbilical vein endothelial cells (HUVEC). Preincubation of the lymphocytes with F9 reduced the adherence to about 20% of unstimulated and to about 30% of phorboldibutyrate (P(Bu)2) stimulated lymphocytes. Using flow cytometry, both crude bromelain and protease F9 reduced the expression of CD44, but not of LFA-1, on PBL. F9 was about 10 times more active than crude bromelain; at 2.5 μg/ml of F9 about 97% inhibition of CD44 expression was found. A mAb against CD44 was tested and found to block the F9-induced decrease in PBL-binding to HUVEC. The results indicate that F9 selectively decreases the CD44 mediated binding of PBL to HUVEC
    corecore