2,551 research outputs found

    Increasing security of supply by the use of a local power controller during large system disturbances

    Get PDF
    This paper describes intelligent ways in which distributed generation and local loads can be controlled during large system disturbances, using Local Power Controllers. When distributed generation is available, and a system disturbance is detected early enough, the generation can be dispatched, and its output power can be matched as closely as possible to local microgrid demand levels. Priority-based load shedding can be implemented to aid this process. In this state, the local microgrid supports the wider network by relieving the wider network of the micro-grid load. Should grid performance degrade further, the local microgrid can separate itself from the network and maintain power to the most important local loads, re-synchronising to the grid only after more normal performance is regained. Such an intelligent system would be a suitable for hospitals, data centres, or any other industrial facility where there are critical loads. The paper demonstrates the actions of such Local Power Controllers using laboratory experiments at the 10kVA scale

    Spatial intensity distribution analysis quantifies the extent and regulation of homodimerization of the secretin receptor

    Get PDF
    Previous studies have indicated that the G protein-coupled secretin receptor is present as a homo-dimer, organized through symmetrical contacts in transmembrane domain IV, and that receptor dimerization is critical for high potency signalling by secretin. However, whether all of the receptor exists in the dimeric form or if this is regulated, is unclear. We used measures of quantal brightness of the secretin receptor tagged with monomeric enhanced green fluorescent protein (mEGFP) and Spatial Intensity Distribution Analysis to assess this. Calibration using cells expressing plasma membrane-anchored forms of mEGFP initially allowed demonstration that the Epidermal Growth Factor receptor is predominantly monomeric in the absence of ligand and whilst wild type receptor was rapidly converted to a dimeric form by ligand, a mutated form of this receptor remained monomeric. Equivalent studies showed that at moderate expression levels the secretin receptor exists as a mixture of monomeric and dimeric forms, with little evidence of higher-order complexity. However, sodium butyrate induced up-regulation of the receptor resulted in a shift from monomeric towards oligomeric organization. By contrast, a form of the secretin receptor containing a pair of mutations on the lipid-facing side of transmembrane domain IV was almost entirely monomeric. Down-regulation of the secretin receptor-interacting G protein Gαs did not alter receptor organization, indicating that dimerization is defined specifically by direct protein-protein interactions between copies of the receptor polypeptide, whilst short term treatment with secretin had no effect on organization of the wild type receptor but increased the dimeric proportion of the mutated receptor variant

    On the smoothness of the multi-BMPV black hole spacetime

    Full text link
    We demonstrate that, in a multi-BMPV black hole spacetime, the event horizon is not smooth. We explicitly show that for a simpler configuration comprising a line of static extremal black holes and a single BMPV black hole, the metric at the horizon of the BMPV black hole is once, but not twice, continuously differentiable. We argue that this result is also valid when all the black holes are rotating. The Maxwell field strength is shown to be continuous, but not differentiable at the horizon. We also briefly demonstrate that previous work done to show lack of smoothness of static multi-centre solutions in five dimensions is not significantly modified by the inclusion of a higher derivative term in the action for five dimensional supergravity.Comment: 17 pages; reference adde

    Dynamic regulation of quaternary organization of the M1 muscarinic receptor by subtype-selective antagonist drugs

    Get PDF
    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands is unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by employing Spatial Intensity Distribution Analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules.microm-2 of the human muscarinic M1 receptor identified an ~75/25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter-term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked upregulation of the receptor, simple mass-action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior

    Planets in Spin-Orbit Misalignment and the Search for Stellar Companions

    Full text link
    The discovery of giant planets orbiting close to their host stars was one of the most unexpected results of early exoplanetary science. Astronomers have since found that a significant fraction of these 'Hot Jupiters' move on orbits substantially misaligned with the rotation axis of their host star. We recently reported the measurement of the spin-orbit misalignment for WASP-79b by using data from the 3.9 m Anglo-Australian Telescope. Contemporary models of planetary formation produce planets on nearly coplanar orbits with respect to their host star's equator. We discuss the mechanisms which could drive planets into spin-orbit misalignment. The most commonly proposed being the Kozai mechanism, which requires the presence of a distant, massive companion to the star-planet system. We therefore describe a volume-limited direct-imaging survey of Hot Jupiter systems with measured spin-orbit angles, to search for the presence of stellar companions and test the Kozai hypothesis.Comment: Accepted for publication in the peer-reviewed proceedings of the 13th annual Australian Space Science Conferenc

    The classical capacity of quantum thermal noise channels to within 1.45 bits

    Full text link
    We find a tight upper bound for the classical capacity of quantum thermal noise channels that is within 1/ln21/\ln 2 bits of Holevo's lower bound. This lower bound is achievable using unentangled, classical signal states, namely displaced coherent states. Thus, we find that while quantum tricks might offer benefits, when it comes to classical communication they can only help a bit.Comment: Two pages plus a bi

    How many photons are needed to distinguish two transparencies?

    Get PDF
    We give a bound on the minimum number of photons that must be absorbed by any quantum protocol to distinguish between two transparencies. We show how a quantum Zeno method in which the angle of rotation is varied at each iteration can attain this bound in certain situations.Comment: 5 pages, 4 figure

    Age- and activity-related differences in the abundance of Myosin essential and regulatory light chains in human muscle

    Get PDF
    Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM).We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping

    Distinct lower visual field preference for object shape

    Get PDF
    YesHumans manipulate objects chiefly within their lower visual field, a consequence of upright posture and the anatomical position of hands and arms.This study tested the hypothesis of enhanced sensitivity to a range of stimuli within the lower visual field. Following current models of hierarchical processing within the ventral steam, discrimination sensitivity was measured for orientation, curvature, shape (radial frequency patterns), and faces at various para-central locations (horizontal, vertical, and main diagonal meridians) and eccentricities (5° and 10°). Peripheral sensitivity was isotropic for orientation and curvature. By contrast, observers were significantly better at discriminating shapes throughout the lower visual field compared to elsewhere. For faces, however, peak sensitivity was found in the left visual field, corresponding to the right hemispheric localization of human face processing. Presenting head outlines without any internal features (e.g., eyes, mouth) recovered the lower visual field advantage found for simple shapes. A lower visual field preference for the shape of an object, which is absent for more localized information (orientation and curvature) but also for more complex objects (faces), is inconsistent with a strictly feed-forward model and poses a challenge for multistage models of object perception. The distinct lower visual field preference for contour shapes is, however, consistent with an asymmetry at intermediate stages of visual processing, which may play a key role in representing object characteristics that are particularly relevant to visually guided actions
    corecore