174 research outputs found

    Skilling Up: Providing Educational Opportunities for Aboriginal Education Workers through Technology-based Pedagogy

    Get PDF
    Over the past decade Aboriginal and Torres Strait Islander studies and perspectives have been mandated across the Australian national curriculum and all teachers are now required to demonstrate strategies for teaching Aboriginal and Torres Strait Islander students and have a broad knowledge of Aboriginal histories, cultures and languages. This paper describes a project focused on enabling Aboriginal Education Workers (AEWs) to play a critical role in transforming these initiatives into real and sustainable change through authentic, technology-based pedagogy. Indigenous research methodologies and design-based research (DBR) were used to investigate the potential educational roles for AEWs enabled by e-learning and new technologies. The project, called Skilling Up: Improving educational opportunities for AEWs through technology based pedagogy was funded by the Office of Learning and Teaching. This paper reports on the findings of the study conducted in Western Australia, including pre-study survey results, together with a description of a unit of study to provide opportunities for AEWs to use technologies in their work, and to create authentic digital stories for use in teacher education. The development of design principles for the design of such environments is also discussed

    Skilling Up: Providing Educational Opportunities for Aboriginal Education Workers through Technology-based Pedagogy

    Get PDF
    Over the past decade Aboriginal and Torres Strait Islander studies and perspectives have been mandated across the Australian national curriculum and all teachers are now required to demonstrate strategies for teaching Aboriginal and Torres Strait Islander students and have a broad knowledge of Aboriginal histories, cultures and languages. This paper describes a project focused on enabling Aboriginal Education Workers (AEWs) to play a critical role in transforming these initiatives into real and sustainable change through authentic, technology-based pedagogy. Indigenous research methodologies and design-based research (DBR) were used to investigate the potential educational roles for AEWs enabled by e-learning and new technologies. The project, called Skilling Up: Improving educational opportunities for AEWs through technology based pedagogy was funded by the Office of Learning and Teaching. This paper reports on the findings of the study conducted in Western Australia, including pre-study survey results, together with a description of a unit of study to provide opportunities for AEWs to use technologies in their work, and to create authentic digital stories for use in teacher education. The development of design principles for the design of such environments is also discussed

    Rapid and damage-free outgassing of implanted helium from amorphous silicon oxycarbide

    Get PDF
    Damage caused by implanted helium (He) is a major concern for material performance in future nuclear reactors. We use a combination of experiments and modeling to demonstrate that amorphous silicon oxycarbide (SiOC) is immune to He-induced damage. By contrast with other solids, where implanted He becomes immobilized in nanometer-scale precipitates, He in SiOC remains in solution and outgasses from the material via atomic-scale diffusion without damaging its free surfaces. Furthermore, the behavior of He in SiOC is not sensitive to the exact concentration of carbon and hydrogen in this material, indicating that the composition of SiOC may be tuned to optimize other properties without compromising resistance to implanted He

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Single-Dose Mucosal Immunization with a Candidate Universal Influenza Vaccine Provides Rapid Protection from Virulent H5N1, H3N2 and H1N1 Viruses

    Get PDF
    The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd) expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic

    αEβ7 Integrin Identifies Subsets of Pro-Inflammatory Colonic CD4+ T Lymphocytes in Ulcerative Colitis.

    Get PDF
    Background and Aims The αEβ7 integrin is crucial for retention of T lymphocytes at mucosal surfaces through its interaction with E-cadherin. Pathogenic or protective functions of these cells during human intestinal inflammation, such as ulcerative colitis [UC], have not previously been defined, with understanding largely derived from animal model data. Defining this phenotype in human samples is important for understanding UC pathogenesis and is of translational importance for therapeutic targeting of αEβ7-E-cadherin interactions. Methods αEβ7+ and αEβ7- colonic T cell localization, inflammatory cytokine production and expression of regulatory T cell-associated markers were evaluated in cohorts of control subjects and patients with active UC by immunohistochemistry, flow cytometry and real-time PCR of FACS-purified cell populations. Results CD4+αEβ7+ T lymphocytes from both healthy controls and UC patients had lower expression of regulatory T cell-associated genes, including FOXP3, IL-10, CTLA-4 and ICOS in comparison with CD4+αEβ7- T lymphocytes. In UC, CD4+αEβ7+ lymphocytes expressed higher levels of IFNγ and TNFα in comparison with CD4+αEβ7- lymphocytes. Additionally the CD4+αEβ7+ subset was enriched for Th17 cells and the recently described Th17/Th1 subset co-expressing both IL-17A and IFNγ, both of which were found at higher frequencies in UC compared to control. Conclusion αEβ7 integrin expression on human colonic CD4+ T cells was associated with increased production of pro-inflammatory Th1, Th17 and Th17/Th1 cytokines, with reduced expression of regulatory T cell-associated markers. These data suggest colonic CD4+αEβ7+ T cells are pro-inflammatory and may play a role in UC pathobiology

    Developing an impact library for forecasting surface water flood risk

    Get PDF
    During surface water flooding events, emergency responders require detailed information on the risks posed in order to provide an appropriate and effective response. Few early warning systems quantitatively estimate the risk and impacts of surface water flooding. Improvements in computational processing capability, availability of new datasets and developments in forecasting models means that the forecasting information currently being supplied by the Flood Forecasting Centre can be improved upon through the application of a timely, impact‐based model. This article presents a novel approach to collating receptor datasets into a pre‐calculated Impact Library for use in a Hazard Impact Model (HIM) that will operate using real‐time probabilistic rainfall and surface runoff forecasts for England and Wales. The HIM provides an approach suitable for modelling flood impacts. Initial results are presented for a case study covering the 2012 floods in the North East of England. Information generated by the HIM provides additional benefits beyond current methods. Features include operator access to 1 km 15 min spatial–temporal data, analysis of individual impact criteria and modular refinement of the Impact Library to suit different situations. The HIM has been developed in partnership via the Natural Hazards Partnership

    Impact of Surface Ligand on the Biocompatibility of InP/ZnS Quantum Dots with Platelets

    Get PDF
    InP/ZnS quantum dots (QDs) have received a large focus in recent years as a safer alternative to heavy metal-based QDs. Given their intrinsic fluorescent imaging capabilities, these QDs can be potentially relevant for in vivo platelet imaging. The InP/ZnS QDs are synthesized and their biocompatibility investigated through the use of different phase transfer agents. Analysis of platelet function indicates that platelet-QD interaction can occur at all concentrations and for all QD permutations tested. However, as the QD concentration increases, platelet aggregation is induced by QDs alone independent of natural platelet agonists. This study helps to define a range of concentrations and coatings (thioglycolic acid and penicillamine) that are biocompatible with platelet function. With this information, the platelet-QD interaction can be identified using multiple methods. Fluorescent lifetime imaging microscopy (FLIM) and confocal studies have shown QDs localize on the surface of the platelet toward the center while showing evidence of energy transfer within the QD population. It is believed that these findings are an important stepping point for the development of fluorescent probes for platelet imaging

    Differences in the signaling pathways of α1A- and α1B-adrenoceptors are related to different endosomal targeting

    Get PDF
    Aims: To compare the constitutive and agonist-dependent endosomal trafficking of α1A- and α1B-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype. Methods: Using CypHer5 technology and VSV-G epitope tagged α1A- and α1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot). Results and Conclusions: Constitutive as well as agonist-induced trafficking of α1A and α1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin
    corecore