309 research outputs found

    The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

    Get PDF
    We present the first multicolor view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (HST ACS). Radial profile fits of the surface brightness along the disk's semimajor axis indicate that the disk is not continuously flared, and extends to ~540 AU. The disk's color (V − I) = 1.1 at a radial distance of 3.5'' is redder than the observed stellar color (V − I) = 0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e., grain growth) and/or composition, both of which would be consistent with the observed nonflared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansae observed in archival HST Space Telescope Imaging Spectrograph (STIS) coronagraphic data. Following transformation to similar bandpasses, we find that the scattered light disk of HD 163296 is 1 mag arcsec^(−2) fainter at 3.5'' in the STIS data than in the ACS data. Moreover, variations are seen in (1) the visibility of the ansa(e) structures, (2) the relative surface brightness of the ansa(e) structures, and (3) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric

    Confronting Standard Models of Proto--Planetary Disks With New Mid--Infrared Sizes from the Keck Interferometer

    Get PDF
    We present near and mid-infrared interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the IRTF of 11 well known young stellar objects, several observed for the first time in these spectral and spatial resolution regimes. With AU-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and mid-infrared disk emission. We find a high degree of correlation between the stellar luminosity and the mid-infrared disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the SED and spatially-resolved mid-infrared data simultaneously; specifically a more compact source of mid-infrared emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the two-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modelling alone, although detailed silicate feature fitting by McClure et al. 2013 recently came to a similar conclusion. As has been suggested recently by Menu et al. 2015, the difficulty in predicting mid-infrared sizes from the SED alone might hint at "transition disk"-like gaps in the inner AU; however, the relatively high correlation found in our mid-infrared disk size vs. stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead

    Limits on the Optical Brightness of the Epsilon Eridani Dust Ring

    Full text link
    The STIS/CCD camera on the {\em Hubble Space Telescope (HST)} was used to take deep optical images near the K2V main-sequence star ϵ\epsilon Eridani in an attempt to find an optical counterpart of the dust ring previously imaged by sub-mm observations. Upper limits for the optical brightness of the dust ring are determined and discussed in the context of the scattered starlight expected from plausible dust models. We find that, even if the dust is smoothly distributed in symmetrical rings, the optical surface brightness of the dust, as measured with the {\em HST}/STIS CCD clear aperture at 55 AU from the star, cannot be brighter than about 25 STMAG/"2^2. This upper limit excludes some solid grain models for the dust ring that can fit the IR and sub-mm data. Magnitudes and positions for ≈\approx 59 discrete objects between 12.5" to 58" from ϵ\epsilon Eri are reported. Most if not all of these objects are likely to be background stars and galaxies.Comment: Revision corrects author lis

    Discovery of an 86 AU Radius Debris Ring Around HD 181327

    Get PDF
    HST/NICMOS PSF-subtracted coronagraphic observations of HD 181327 have revealed the presence of a ring-like disk of circumstellar debris seen in 1.1 micron light scattered by the disk grains, surrounded by a di use outer region of lower surface brightness. The annular disk appears to be inclined by 31.7 +/- 1.6 deg from face on with the disk major axis PA at 107 +/-2 deg . The total 1.1 micron flux density of the light scattered by the disk (at 1.2" < r < 5.0") of 9.6 mJy +/- 0.8 mJy is 0.17% +/- 0.015% of the starlight. Seventy percent of the light from the scattering grains appears to be confined in a 36 AU wide annulus centered on the peak of the radial surface brightness (SB) profile 86.3 +/- 3.9 AU from the star, well beyond the characteristic radius of thermal emission estimated from IRAS and Spitzer flux densities assuming blackbody grains (~ 22 AU). The light scattered by the ring appears bilaterally symmetric, exhibits directionally preferential scattering well represented by a Henyey-Greenstein scattering phase function with g = 0.30 +/- 0.03, and has an azimuthally medianed SB at the 86.3 AU radius of peak SB of 1.00 +/- 0.07 mJy arcsec^-2. No photocentric offset is seen in the ring relative to the position of the central star. A low surface brightness diffuse halo is seen in the NICMOS image to a distance of ~ 4" Deeper 0.6 micron HST/ACS PSF-subtracted coronagraphic observations reveal a faint outer nebulosity, asymmetrically brighter to the North of the star. We discuss models of the disk and properties of its grains, from which we infer a maximum vertical scale height of 4 - 8 AU at the 87.6 AU radius of maximum surface density, and a total maximum dust mass of collisionally replenished grains with minimum grain sizes of ~ 1 micron of ~ 4 M(moon).Comment: 45 pages, 15 figures, accepted for publication in Ap

    Chlorhexidine hexametaphosphate as a wound care material coating: antimicrobial efficacy, toxicity and effect on healing.

    Get PDF
    AIM: In this study, chlorhexidine hexametaphosphate (CHX-HMP) is investigated as a persistent antimicrobial coating for wound care materials. MATERIALS & METHODS: CHX-HMP was used as a wound care material coating and compared with chlorhexidine digluconate materials with respect to antimicrobial efficacy, toxicity and wound closure. RESULTS: Antimicrobial efficacy at day 1, 3 and 7 was observed with experimental and commercial materials. CHX-HMP coated materials had less toxic effect on human placental cells than commercial chlorhexidine dressings. CHX-HMP in pluronic gel did not delay healing but reduced wound colonization by E. faecalis. CONCLUSION: CHX-HMP could become a useful component of wound care materials with sustained antimicrobial efficacy, lower toxicity than chlorhexidine digluconate materials, and reduction in wound colonization without affecting closure

    Confronting standard models of proto-planetary disks with new mid-infrared sizes from the Keck Interferometer

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society/IOP Publishing via the DOI in this record.The published version is in ORE at http://hdl.handle.net/10871/30943We present near and mid–infrared interferometric observations made with the Keck Interferometer Nuller and near–contemporaneous spectro–photometry from the IRTF of 11 well known young stellar objects, several observed for the first time in these spectral and spatial resolution regimes. With AU–level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and mid–infrared disk emission. We find a high degree of correlation between the stellar luminosity and the mid–infrared disk sizes after using near–infrared data to remove the contribution from the inner rim. We then use a semi–analytical physical model to also find that the very widely used “star + inner dust rim+ flared disk” class of models strongly fails to reproduce the SED and spatially–resolved mid–infrared data simultaneously; specifically a more compact source of mid–infrared emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the two–rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modelling alone, although detailed silicate feature fitting by McClure et al. (2013) recently came to a similar conclusion. As has been suggested recently by Menu et al. (2015), the difficulty in predicting mid–infrared sizes from the SED alone might hint at “transition disk”–like gaps in the inner AU; however, the relatively high correlation found in our mid–infrared disk size vs. stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.The authors wish to acknowledge fruitful discussions with Nuria Calvet and Melissa McClure. Part of this work was performed while X. C. was a Visiting Graduate Student Research Fellow at the Infrared Processing and Analysis Center (IPAC), California Institute of Technology. The Keck Interferometer was funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration Program. Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Data presented in this paper were obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration. We gratefully acknowledge support and participation in the IRTF/BASS observing runs by Daryl Kim, The Aerospace Corporation. This work has made use of services produced by the NASA Exoplanet Science Institute at the California Institute of Technology. M. S. was supported by NASA ADAP grant NNX09AC73G. R. W. R. was supported by the IR&D program of The Aerospace Corporatio
    • …
    corecore