26 research outputs found

    Sampling Distributions of Random Electromagnetic Fields in Mesoscopic or Dynamical Systems

    Full text link
    We derive the sampling probability density function (pdf) of an ideal localized random electromagnetic field, its amplitude and intensity in an electromagnetic environment that is quasi-statically time-varying statistically homogeneous or static statistically inhomogeneous. The results allow for the estimation of field statistics and confidence intervals when a single spatial or temporal stochastic process produces randomization of the field. Results for both coherent and incoherent detection techniques are derived, for Cartesian, planar and full-vectorial fields. We show that the functional form of the sampling pdf depends on whether the random variable is dimensioned (e.g., the sampled electric field proper) or is expressed in dimensionless standardized or normalized form (e.g., the sampled electric field divided by its sampled standard deviation). For dimensioned quantities, the electric field, its amplitude and intensity exhibit different types of Bessel KK sampling pdfs, which differ significantly from the asymptotic Gauss normal and χ2p(2)\chi^{(2)}_{2p} ensemble pdfs when ν\nu is relatively small. By contrast, for the corresponding standardized quantities, Student tt, Fisher-Snedecor FF and root-FF sampling pdfs are obtained that exhibit heavier tails than comparable Bessel KK pdfs. Statistical uncertainties obtained from classical small-sample theory for dimensionless quantities are shown to be overestimated compared to dimensioned quantities. Differences in the sampling pdfs arising from de-normalization versus de-standardization are obtained.Comment: 12 pages, 15 figures, accepted for publication in Phys. Rev. E, minor typos correcte

    Index theorem for topological excitations on R^3 * S^1 and Chern-Simons theory

    Full text link
    We derive an index theorem for the Dirac operator in the background of various topological excitations on an R^3 \times S^1 geometry. The index theorem provides more refined data than the APS index for an instanton on R^4 and reproduces it in decompactification limit. In the R^3 limit, it reduces to the Callias index theorem. The index is expressed in terms of topological charge and the eta-invariant associated with the boundary Dirac operator. Neither topological charge nor eta-invariant is typically an integer, however, the non-integer parts cancel to give an integer-valued index. Our derivation is based on axial current non-conservation--an exact operator identity valid on any four-manifold--and on the existence of a center symmetric, or approximately center symmetric, boundary holonomy (Wilson line). We expect the index theorem to usefully apply to many physical systems of interest, such as low temperature (large S^1, confined) phases of gauge theories, center stabilized Yang-Mills theories with vector-like or chiral matter (at S^1 of any size), and supersymmetric gauge theories with supersymmetry-preserving boundary conditions (also at any S^1). In QCD-like and chiral gauge theories, the index theorem should shed light into the nature of topological excitations responsible for chiral symmetry breaking and the generation of mass gap in the gauge sector. We also show that imposing chirally-twisted boundary condition in gauge theories with fermions induces a Chern-Simons term in the infrared. This suggests that some QCD-like gauge theories should possess components with a topological Chern-Simons phase in the small S^1 regime.Comment: 29 pages, refs added, published versio

    Geometric Aspects of Confining Strings

    Full text link
    Confining strings in 4D are effective, thick strings describing the confinement phase of compact U(1) and, possibly, also non-Abelian gauge fields. We show that these strings are dual to the gauge fields, inasmuch as their perturbative regime corresponds to the strong coupling (large e) regime of the gauge theory. In this regime they describe smooth surfaces with long-range correlations and Hausdorff dimension two. For lower couplings e and monopole fugacities z, a phase transition takes place, beyond which the smooth string picture is lost. On the critical line intrinsic distances on the surface diverge and correlators vanish, indicating that world-sheets become fractal.Comment: 19 pages, 4 figures, harvma

    Monopole Condensation and Antisymmetric Tensor Fields: Compact QED and the Wilsonian RG Flow in Yang-Mills Theories

    Get PDF
    A field theoretic description of monopole condensation in strongly coupled gauge theories is given by actions involving antisymmetric tensors B_{\mu\nu} of rank 2. We rederive the corresponding action for 4d compact QED, summing explicitly over all possible monopole configurations. Its gauge symmetries and Ward identities are discussed. Then we consider the Wilsonian RGs for Yang-Mills theories in the presence of collective fields (again tensors B_{\mu\nu}) for the field strengths F_{\mu \nu} associated to the U(1) subgroups. We show that a ``vector-like'' Ward identity for the Wilsonian action involving B_{\mu\nu}, whose validity corresponds to monopole condensation, constitutes a fixed point of the Wilsonian RG flow.Comment: 18 pages (LaTeX2e), 1 fi

    Semiclassical dynamics of a spin-1/2 in an arbitrary magnetic field

    Full text link
    The spin coherent state path integral describing the dynamics of a spin-1/2-system in a magnetic field of arbitrary time-dependence is considered. Defining the path integral as the limit of a Wiener regularized expression, the semiclassical approximation leads to a continuous minimal action path with jumps at the endpoints. The resulting semiclassical propagator is shown to coincide with the exact quantum mechanical propagator. A non-linear transformation of the angle variables allows for a determination of the semiclassical path and the jumps without solving a boundary-value problem. The semiclassical spin dynamics is thus readily amenable to numerical methods.Comment: 16 pages, submitted to Journal of Physics

    Strings with Negative Stiffness and Hyperfine Structure

    Get PDF
    We propose a new string model by adding a higher-order gradient term to the rigid string, so that the stiffness can be positive or negative without loosing stability. In the large-D approximation, the model has three phases, one of which with a new type of generalized "antiferromagnetic" orientational correlations. We find an infrared-stable fixed point describing world-sheets with vanishing tension and Hausdorff dimension D_H=2. Crumpling is prevented by the new term which suppresses configurations with rapidly changing extrinsic curvature.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re27

    The superstring Hagedorn temperature in a pp-wave background

    Full text link
    The thermodynamics of type IIB superstring theory in the maximally supersymmetric plane wave background is studied. We compute the thermodynamic partition function for non-interacting strings exactly and the result differs slightly from previous computations. We clarify some of the issues related to the Hagedorn temperature in the limits of small and large constant RR 5-form. We study the thermodynamic behavior of strings in the case of AdS3Ă—S3Ă—T4AdS_3 \times S^3 \times T^4 geometries in the presence of NS-NS and RR 3-form backgrounds. We also comment on the relationship of string thermodynamics and the thermodynamic behavior of the sector of Yang-Mills theory which is the holographic dual of the string theory.Comment: 22 pages, JHEP style, minor misprints corrected, some comments adde

    Photon mixing in universes with large extra-dimensions

    Get PDF
    In presence of a magnetic field, photons can mix with any particle having a two-photon vertex. In theories with large compact extra-dimensions, there exists a hierachy of massive Kaluza-Klein gravitons that couple to any photon entering a magnetic field. We study this mixing and show that, in comparison with the four dimensional situation where the photon couples only to the massless graviton, the oscillation effect may be enhanced due to the existence of a large number of Kaluza-Klein modes. We give the conditions for such an enhancement and then investigate the cosmological and astrophysical consequences of this phenomenon; we also discuss some laboratory experiments. Axions also couple to photons in the same way; we discuss the effect of the existence of bulk axions in universes with large extra-dimensions. The results can also be applied to neutrino physics with extra-dimensions.Comment: 41 pages, LaTex, 6 figure

    Infrared and ultraviolet asymptotic solutions to gluon and ghost propagators in Yang-Mills theory

    Get PDF
    We examine the possibility that there may exist a logarithmic correction to the infrared asymptotic solution with power behavior which has recently been found for the gluon and Faddeev-Popov ghost propagators in the Landau gauge. We propose a new Ansatz to find a pair of solutions for the gluon and ghost form factors by solving the coupled Schwinger-Dyson equation under a simple truncation. This Ansatz enables us to derive the infrared and ultraviolet asymptotic solutions simultaneously and to understand why the power solution and the logarithmic solution is possible only in the infrared and ultraviolet limit respectively. Even in the presence of the logarithmic correction, the gluon propagator vanishes and the ghost propagator is enhanced in the infrared limit, and the gluon-ghost-antighost coupling constant has an infrared fixed point (but with a different β\beta function). This situation is consistent with Gribov-Zwanziger confinement scenario and color confinement criterion of Kugo and Ojima.Comment: 15 pages, 2 figures, version to appear in Phys. Lett.
    corecore