227 research outputs found

    Ising thin films with modulations and surface defects

    Full text link
    Properties of magnetic films are studied in the framework of Ising models. In particular, we discuss critical phenomena of ferromagnetic Ising films with straight lines of magnetic adatoms and straight steps on the surface as well as phase diagrams of the axial next-nearest neighbour Ising (ANNNI) model for thin films exhibiting various spatially modulated phases.Comment: 6 pages, 4 figures include

    Growth and magnetism of self-organized arrays of Fe(110) wires formed by deposition on kinetically grooved W(110)

    Full text link
    Homoepitaxy of W(110) and Mo(110) is performed in a kinetically-limited regime to yield a nanotemplate in the form of a uniaxial array of hills and grooves aligned along the [001] direction. The topography and organization of the grooves were studied with RHEED and STM. The nanofacets, of type {210}, are tilted 18° away from (110). The lateral period could be varied from 4 to 12nm by tuning the deposition temperature. Magnetic nanowires were formed in the grooves by deposition of Fe at 150°C on such templates. Fe/W wires display an easy axis along [001] and a mean blocking temperature Tb=100KComment: Proceedings of ECOSS 2006 (Paris

    Controls on the location of compressional deformation on the NW European margin

    Get PDF
    The distribution of Cenozoic compressional structures along the NW European margin has been compared with maps of the thickness of the crystalline crust derived from a compilation of seismic refraction interpretations and gravity modelling, and with the distribution of high-velocity lower crust and/or partially serpentinized upper mantle detected by seismic experiments. Only a subset of the mapped compressional structures coincide with areas susceptible to lithospheric weakening as a result of crustal hyperextension and partial serpentinization of the upper mantle. Notably, partially serpentinized upper mantle is well documented beneath the central part of the southern Rockall Basin, but compressional features are sparse in that area. Where compressional structures have formed but the upper mantle is not serpentinized, simple rheological modelling suggests an alternative weakening mechanism involving ductile lower crust and lithospheric decoupling. The presence of pre-existing weak zones (associated with the properties of the gouge and overpressure in fault zones) and local stress magnitude and orientation are important contributing factors

    Geologically constrained evolutionary geomechanical modelling of diapir and basin evolution: a case study from the Tarfaya basin, West African coast

    Get PDF
    We systematically incorporate burial history, sea floor geometry and tectonic loads from a sequential kinematic restoration model into a 2D evolutionary geomechanical model that simulates the formation of the Sandia salt diapir, Tarfaya basin, NW African Coast. We use a poro-elastoplastic description for the sediment behaviour and a viscoplastic description for the salt. Sedimentation is coupled with salt flow and regional shortening to determine the sediment porosity and strength and to capture the interaction between salt and sediments. We find that temporal and spatial variation in sedimentation rate is a key control on the kinematic evolution of the salt system. Incorporation of sedimentation rates from the kinematic restoration at a location east of Sandia leads to a final geomechanical model geometry very similar to that observed in seismic reflection data. We also find that changes in the variation of shortening rates can significantly affect the present-day stress state above salt. Overall, incorporating kinematic restoration data into evolutionary models provides insights into the key parameters that control the evolution of geologic systems. Furthermore, it enables more realistic evolutionary geomechanical models, which, in turn, provide insights into sediment stress and porosity

    Observation of thickness dependence of magnetic surface anisotropy in ultrathin amorphous films.

    Get PDF
    Copyright © 1990 The American Physical SocietyFerromagnetic resonance (FMR) and SQUID magnetometry measurements have been made on multilayers of amorphous Fe70B30/Ag. The dependence of the magnetic surface anisotropy constant Ks on the magnetic layer thickness 2L has been determined in the range 1.6 Å16.5 Å, but decreases monotonically towards zero as 2L decreases from 16.5 Å towards zero. The FMR results can be well described by a theory developed for ultrathin amorphous ferromagnetic layers

    Tunable magnetic properties of arrays of Fe(110) nanowires grown on kinetically-grooved W(110) self-organized templates

    Full text link
    We report a detailed magnetic study of a new type of self-organized nanowires disclosed briefly previously [B. Borca et al., Appl. Phys. Lett. 90, 142507 (2007)]. The templates, prepared on sapphire wafers in a kinetically-limited regime, consist of uniaxially-grooved W(110) surfaces, with a lateral period here tuned to 15nm. Fe deposition leads to the formation of (110) 7 nm-wide wires located at the bottom of the grooves. The effect of capping layers (Mo, Pd, Au, Al) and underlayers (Mo, W) on the magnetic anisotropy of the wires was studied. Significant discrepancies with figures known for thin flat films are evidenced and discussed in terms of step anisotropy and strain-dependent surface anisotropy. Demagnetizing coeffcients of cylinders with a triangular isosceles cross-section have also been calculated, to estimate the contribution of dipolar anisotropy. Finally, the dependence of magnetic anisotropy with the interface element was used to tune the blocking temperature of the wires, here from 50K to 200 K

    Critical Susceptibility Exponent Measured from Fe/W(110) Bilayers

    Full text link
    The critical phase transition in ferromagnetic ultrathin Fe/W(110) films has been studied using the magnetic ac susceptibility. A statistically objective, unconstrained fitting of the susceptibility is used to extract values for the critical exponent (gamma), the critical temperature Tc, the critical amplitude (chi_o) and the range of temperature that exhibits power-law behaviour. A fitting algorithm was used to simultaneously minimize the statistical variance of a power law fit to individual experimental measurements of chi(T). This avoids systematic errors and generates objective fitting results. An ensemble of 25 measurements on many different films are analyzed. Those which permit an extended fitting range in reduced temperature lower than approximately .00475 give an average value gamma=1.76+-0.01. Bilayer films give a weighted average value of gamma = 1.75+-0.02. These results are in agreement with the -dimensional Ising exponent gamma= 7/4. Measurements that do not exhibit power-law scaling as close to Tc (especially films of thickness 1.75ML) show a value of gamma higher than the Ising value. Several possibilities are considered to account for this behaviour.Comment: -Submitted to Phys. Rev. B -Revtex4 Format -6 postscript figure

    Growth modes of Fe(110) revisited: a contribution of self-assembly to magnetic materials

    Full text link
    We have revisited the epitaxial growth modes of Fe on W(110) and Mo(110), and propose an overview or our contribution to the field. We show that the Stranski-Krastanov growth mode, recognized for a long time in these systems, is in fact characterized by a bimodal distribution of islands for growth temperature in the range 250-700°C. We observe firstly compact islands whose shape is determined by Wulff-Kaischev's theorem, secondly thin and flat islands that display a preferred height, ie independant from nominal thickness and deposition procedure (1.4nm for Mo, and 5.5nm for W on the average). We used this effect to fabricate self-organized arrays of nanometers-thick stripes by step decoration. Self-assembled nano-ties are also obtained for nucleation of the flat islands on Mo at fairly high temperature, ie 800°C. Finally, using interfacial layers and solid solutions we separate two effects on the preferred height, first that of the interfacial energy, second that of the continuously-varying lattice parameter of the growth surface.Comment: 49 pages. Invited topical review for J. Phys.: Condens. Matte

    First principles calculation of structural and magnetic properties for Fe monolayers and bilayers on W(110)

    Full text link
    Structure optimizations were performed for 1 and 2 monolayers (ML) of Fe on a 5 ML W(110) substrate employing the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. The magnetic moments were also obtained for the converged and optimized structures. We find significant contractions (∼\sim 10 %) for both the Fe-W and the neighboring Fe-Fe interlayer spacings compared to the corresponding bulk W-W and Fe-Fe interlayer spacings. Compared to the Fe bcc bulk moment of 2.2 μB\mu_B, the magnetic moment for the surface layer of Fe is enhanced (i) by 15% to 2.54 μB\mu_B for 1 ML Fe/5 ML W(110), and (ii) by 29% to 2.84 μB\mu_B for 2 ML Fe/5 ML W(110). The inner Fe layer for 2 ML Fe/5 ML W(110) has a bulk-like moment of 2.3 μB\mu_B. These results agree well with previous experimental data
    • …
    corecore