341 research outputs found

    Phase transition and critical behaviour of the d=3 Gross-Neveu model

    Full text link
    A second order phase transition for the three dimensional Gross-Neveu model is established for one fermion species N=1. This transition breaks a paritylike discrete symmetry. It constitutes its peculiar universality class with critical exponent \nu = 0.63 and scalar and fermionic anomalous dimension \eta_\sigma = 0.31 and \eta_\psi = 0.11, respectively. We also compute critical exponents for other N. Our results are based on exact renormalization group equations.Comment: 4 pages, 1 figure; v4 corresponds to the published articl

    O(1/N_f) Corrections to the Thirring Model in 2<d<4

    Full text link
    The Thirring model, that is, a relativistic field theory of fermions with a contact interaction between vector currents, is studied for dimensionalities 2<d<4 using the 1/N_f expansion, where N_f is the number of fermion species. The model is found to have no ultraviolet divergences at leading order provided a regularization respecting current conservation is used. Explicit O(1/N_f) corrections are computed, and the model shown to be renormalizable at this order in the massless limit; renormalizability appears to hold to all orders due to a special case of Weinberg's theorem. This implies there is a universal amplitude for four particle scattering in the asymptotic regime. Comparisons are made with both the Gross-Neveu model and QED.Comment: 22 pages in plain TeX, with 7 figs included using psfig.tex (Minor conceptual changes - algebra unaffected

    A study of the gauge invariant, nonlocal mass operator Trd4xFμν(D2)1FμνTr \int d^4x F_{\mu\nu}(D^2)^{-1} F_{\mu\nu} in Yang-Mills theories

    Get PDF
    The nonlocal mass operator Trd4xFμν(D2)1FμνTr \int d^4x F_{\mu\nu} (D^2)^{-1} F_{\mu\nu} is considered in Yang-Mills theories in Euclidean space-time. It is shown that the operator Trd4xFμν(D2)1FμνTr \int d^4x F_{\mu\nu} (D^2)^{-1} F_{\mu\nu} can be cast in local form through the introduction of a set of additional fields. A local and polynomial action is thus identified. Its multiplicative renormalizability is proven by means of the algebraic renormalization in the class of linear covariant gauges. The anomalous dimensions of the fields and of the mass operator are computed at one loop order. A few remarks on the possible role of this operator for the issue of the gauge invariance of the dimension two condensates are outlined.Comment: 34 page

    The infrared behavior of the gluon and ghost propagators in SU(2) Yang-Mills theory in the maximal Abelian gauge

    Full text link
    We report on some recent analytical results on the behaviour of the gluon and ghost propagators in Euclidean SU(2) Yang-Mills theory quantized in the maximal Abelian gauge (MAG). This gauge is of particular interest for the dual superconductivity picture to explain color confinement. Two kinds of effects are taken into account: those arising from a treatment of Gribov copies in the MAG and those arising from a dynamical mass originating in a dimension two gluon condensate. The diagonal component of the gluon propagator displays the typical Gribov-type behaviour, while the off-diagonal component is of the Yukawa type due to the dynamical mass. These results are in qualitative agreement with available lattice data on the gluon propagators. The off-diagonal ghost propagator exhibits an infrared enhancement due to the Gribov restriction, while the diagonal one remains unaffected.Comment: 6 pages. Talk given by S.P. Sorella at the "I Latin American Workshop on High Energy Phenomenology (I LAWHEP)", December 1-3 2005, Instituto de Fisica, UFRGS, Porto Alegre, Rio Grande Do Sul, Brasi

    The Landau gauge gluon and ghost propagator in the refined Gribov-Zwanziger framework in 3 dimensions

    Full text link
    In previous works, we have constructed a refined version of the Gribov-Zwanziger action in 4 dimensions, by taking into account a novel dynamical effect. In this paper, we explore the 3-dimensional case. Analogously as in 4 dimensions, we obtain a ghost propagator behaving like 1/p21/p^2 in the infrared, while the gluon propagator reaches a finite nonvanishing value at zero momentum. Simultaneously, a clear violation of positivity by the gluon propagator is also found. This behaviour of the propagators turns out be in agreement with the recent numerical simulations.Comment: 26 pages, 16 .eps figures. v3: version accepted for publication in Phys Rev

    A multiloop improvement of non-singlet QCD evolution equations

    Get PDF
    An approach is elaborated for calculation of "all loop" contributions to the non-singlet evolution kernels from the diagrams with renormalon chain insertions. Closed expressions are obtained for sums of contributions to kernels P(z)P(z) for the DGLAP equation and V(x,y)V(x,y) for the "nonforward" ER-BL equation from these diagrams that dominate for a large value of b0b_0, the first β\beta-function coefficient. Calculations are performed in the covariant ξ\xi-gauge in a MS-like scheme. It is established that a special choice of the gauge parameter ξ=3\xi=-3 generalizes the standard "naive nonabelianization" approximation. The solutions are obtained to the ER-BL evolution equation (taken at the "all loop" improved kernel), which are in form similar to one-loop solutions. A consequence for QCD descriptions of hard processes and the benefits and incompleteness of the approach are briefly discussed.Comment: 13 pages, revtex, 2 figures are enclosed as eps-file, the text style and figures are corrected following version, accepted for publication to Phys. Rev.

    A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results

    Full text link
    Recent lattice data have reported an infrared suppressed, positivity violating gluon propagator which is nonvanishing at zero momentum and a ghost propagator which is no longer enhanced. This paper discusses how to obtain analytical results which are in qualitative agreement with these lattice data within the Gribov-Zwanziger framework. This framework allows one to take into account effects related to the existence of gauge copies, by restricting the domain of integration in the path integral to the Gribov region. We elaborate to great extent on a previous short paper by presenting additional results, also confirmed by the numerical simulations. A detailed discussion on the soft breaking of the BRST symmetry arising in the Gribov-Zwanziger approach is provided.Comment: 38 pages, 9 figures, the content of section V has been extended and adapte

    (Borel) convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap

    Full text link
    We reconsider in some detail a construction allowing (Borel) convergence of an alternative perturbative expansion, for specific physical quantities of asymptotically free models. The usual perturbative expansions (with an explicit mass dependence) are transmuted into expansions in 1/F, where F1/g(m)F \sim 1/g(m) for mΛm \gg \Lambda while F(m/Λ)αF \sim (m/\Lambda)^\alpha for m \lsim \Lambda, Λ\Lambda being the basic scale and α\alpha given by renormalization group coefficients. (Borel) convergence holds in a range of FF which corresponds to reach unambiguously the strong coupling infrared regime near m0m\to 0, which can define certain "non-perturbative" quantities, such as the mass gap, from a resummation of this alternative expansion. Convergence properties can be further improved, when combined with δ\delta expansion (variationally improved perturbation) methods. We illustrate these results by re-evaluating, from purely perturbative informations, the O(N) Gross-Neveu model mass gap, known for arbitrary NN from exact S matrix results. Comparing different levels of approximations that can be defined within our framework, we find reasonable agreement with the exact result.Comment: 33 pp., RevTeX4, 6 eps figures. Minor typos, notation and wording corrections, 2 references added. To appear in Phys. Rev.
    corecore