15 research outputs found

    Comparison of anaemia and parasitaemia as indicators of malaria control in household and EPI-health facility surveys in Malawi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The World Health Organization has recommended that anaemia be used as an additional indicator to monitor malaria burden at the community level as malaria interventions are nationally scaled up. To date, there are no published evaluations of this recommendation.</p> <p>Methods</p> <p>To evaluate this recommendation, a comparison of anaemia and parasitaemia among 6-30 month old children was made during two repeated cross-sectional household (HH) and health facility (HF) surveys in six districts across Malawi at baseline (2005) and in a follow-up survey (2008) after a scale up of malaria control interventions.</p> <p>Results</p> <p>HH net ownership did not increase between the years (50.5% vs. 49.8%), but insecticide treated net (ITN) ownership increased modestly from 41.5% (95% CI: 37.2%-45.8%) in 2005 to 45.3% (95% CI: 42.6%-48.0%) in 2008. ITN use by children 6-30 months old, who were living in HH with at least one net, increased from 73.6% (95% CI:68.2%-79.1%) to 80.0% (95% CI:75.9%-84.1%) over the three-year period. This modest increase in ITN use was associated with a decrease in moderate to severe anaemia (Hb <8 g/dl) from 18.4% (95% CI:14.9%-21.8%) in 2005 to 15.4% (13.2%-17.7%) in 2008, while parasitaemia, measured as positive-slide microscopy, decreased from 18.9% (95% CI:14.7%-23.2%) to 16.9% (95% CI:13.8%-20.0%), a relative reduction of 16% and 11%, respectively. In HF surveys, anaemia prevalence decreased from 18.3% (95% CI: 14.9%-21.7%) to 15.4% (95% CI: 12.7%-18.2%), while parasitaemia decreased from 30.6% (95% CI: 25.7%-35.5%) to 13.2% (95% CI: 10.6%-15.8%), a relative reduction of 15% and 57%, respectively.</p> <p>Conclusion</p> <p>Increasing access to effective malaria prevention was associated with a reduced burden of malaria in young Malawian children. Anaemia measured at the HF level at time of routine vaccination may be a good surrogate indicator for its measurement at the HH level in evaluating national malaria control programmes.</p

    Single low-dose primaquine for blocking transmission of Plasmodium falciparum malaria - a proposed model-derived age-based regimen for sub-Saharan Africa.

    Get PDF
    BACKGROUND: In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS: Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS: From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS: We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination

    An interview with Jonathan Mwangata

    No full text

    Keeping clean water clean in a Malawi refugee camp: a randomized intervention trial

    No full text
    OBJECTIVE: This study was undertaken to assess the ability of a water container with a cover and a spout to prevent household contamination of water in a Malawian refugee camp. METHODS: A randomized trial was conducted in a refugee population that had experienced repeated outbreaks of cholera and diarrhoea and where contamination of water in the home was found to be a significant cause of cholera. Four hundred Mozambican refugee households were systematically identified and followed over a 4-month period, one fourth of the households were randomly assigned to exclusively use the improved container for water collection. FINDINGS: Water flowing from the source wells had little or no microbial contamination although the water collectors quickly contaminated their water, primarily through contact with their hands. Analysis of water samples demonstrated that there was a 69% reduction in the geometric mean of faecal coliform levels in household water and 31% less diarrhoeal disease (P = 0.06) in children under 5 years of age among the group using the improved bucket. Regression models examining diarrhoea among under 5-year-olds confirmed the protective effect of the bucket and found that visible faeces in the family latrine and the presence of animals were significantly associated with an increased diarrhoeal incidence in children. CONCLUSION: Household contamination of drinking-water significantly contributed to diarrhoea in this population. Proper chlorination is a less expensive and more effective means of water quality protection in comparison with the improved bucket, but was unpopular and rarely utilized by the camp inhabitants

    Single low-dose primaquine for blocking transmission of Plasmodium falciparum malaria – a proposed model-derived age-based regimen for sub-Saharan Africa

    Get PDF
    BACKGROUND: In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS: Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS: From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS: We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination
    corecore