41 research outputs found

    RULE BASED ADAPTATION: LITERATURE REVIEW

    Get PDF
    Rule based adaptive systems are growing in popularity and rules have been considered as an effective and elastic way to adapt systems. A rule based approach allows transparent monitoring of performed adaptation actions and gives an important advantage of easily modifiable adaptation process. The goal of this paper is to summarize literature review on rule based adaptation systems. The emphasis is put on rule types, semantics used for defining rules and measurement of effectiveness and correctness of rule based adaptation systems. The literature review has been done following a systematic approach consisting of three steps: planning, reviewing and analysis. Targeted research questions have been used to guide the review process. The review results are to be used for conducting further research in the area of rule based context-aware adaptive systems. This paper accents the potential of using rules as means to perform adaptive actions in enterprise applications taking into account contextual factors as well as points challenges, difficulties and open issues for planning, developing, implementing and running of such systems

    Microwave Assisted Synthesis, Modification with Platinum and Photocatalytical Properties of TiO2 Nanofibers

    Get PDF
    In the present work formation of active TiO2 nanoparticles in microwave synthesis and their modification with platinum were studied. Anatase nanopowder and 10 M KOH solution were used as raw materials. Microwave assisted synthesis method permited to obtain TiO2 nanofibres and nanowires with a diameter of 10 nm and a specific surface area in the range of 70 – 150 m2/g. In order to modify TiO2 nanofibers with platinum it was stirred in H2PtCl6 solution under UV irradiation. Photocatalytic activity was determined by degradation of the methylene blue (MB) solution under UV and visible light irradiation. The obtained samples showed higher photocatalytic activity with respect to pure TiO2 nanofibers. The doped TiO2 nanofibers were appropriate for degradation of harmful organic compounds as well as for hydrogen production by water splitting

    Synthesis of Eu2+ and Dy3+ doped strontium aluminates and their properties

    Get PDF
    Financial support to this project was provided by National Research Programme (IMIS2).Strontium aluminate phosphors were synthesized by the solution combustion method using citric acid, urea or glycine as reducing agent and europium and dysprosium as dopants. The content of both dopants was in the range of 1-2 mol%. Dependence of phase composition, crystallite size and specific surface area on calcinations temperature, used reducing agents and dopants were determined. Luminescent properties of the calcinated at 1300 °C powders contained SrAl2O4 (90 %) and Sr4Al24O25 (10%) phases with crystallite size of 80 nm were determined.IMIS2; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    The Synthesis and Characterization of Nickel and Cobalt Ferrite Nanopowders Obtained by Different Methods

    Get PDF
    The single-phase NiFe2O4 and CoFe2O4 ferrites were synthesized by four methods: the high-frequency plasma chemical synthesis (“plasma”), sol-gel self-propagating combustion method (“combust”), and co-precipitation technology, combined with the hydrothermal synthesis (“hydrotherm”) or spray-drying (“spray”). The specific surface area (SSA), crystallite size, and magnetic properties of the synthesized products have been determined. The synthesized ferrites are nanocrystalline single-phase materials with crystallite size of 5-40 nm. The SSA of nanoparticles synthesized in plasma is 28-30 m2/g, the particle size distribution is in the range of 10-100 nm, with some individual particles up to 200 nm. The SSA of the ferrites obtained by the self-combustion and hydrothermal synthesis is 40 ± 3 and 60 ± 5 m2/g, respectively. The SSA of the samples obtained by the spray-drying method is 80-90 m2/g, and the calculated particle size is 13-15 nm. In this process, pellets up to 10 μm are obtained. After synthesis, CoFe2O4 are characterized by the saturation magnetization Ms of 75 emu/g (“plasma”), 53 emu/g (“combust”) and 57 emu/g (“hydrotherm”). The Ms of NiFe2O4 is 44, 29, and 30 emu/g, respectively. The products obtained by the spray-drying method are partially X-ray amorphous and show magnetic properties only after heating above 450°C. These nanopowders were used in sintering studies

    DATA SCIENCE APPROACH FOR IT PROJECT MANAGEMENT

    Get PDF
    Majority of the IT companies realized that ability to analyse and use data, could be one of the key factors for increasing of number of successful projects, portfolios, programs. Key performance indicators based on data analysis helps organizations be more prosperous in a long term perspective. Also, statistical data are very useful for monitoring and evaluation of project results which are very important for managers, delivery directors, CTO and others high level management of company. The Data Science methods could make more efficient project management in several of business problems. Analysis of historical data from the project life-cycle based on Data Science models could provide more efficient benefits for different stakeholders. Differential of the project data vector with target as an integral evaluation of the project success which allow for the complex correlations between separate features. Therefore, the influence of features importance and override creatures could be decreased on the target. This study propose new approach based on Data Science providing more efficient and accurately project management, taking into account best practices and project performance data

    Plasmochemical process for the production of niobium and tantalum nanopowders

    Full text link
    Niobium and tantalum powders used in modern manufacturing are materials with nanostructure. The authors have studied and optimized the process of the production of niobium and tantalum nanopowders (adjusted in the range of the particle size of 20-150 nm) at pilot scale. The process is based on the reduction reaction of pentachlorides of tantalum and niobium with hydrogen in a plasma generator at about 3500 K. To stabilize the structure and adjust the granulometric composition of the produced nanopowders thermal treatment at 1373 K under vacuum was applied. The powders are characterized by very high purity with regard to oxygen and metallic admixtures and by low bulk density (0.1-0.3 g/cm 3). The specimens had a high specific surface area (10-30 m 2/g). The process of compacting and sintering of powders was tested at temperatures from 1173 to 1373 K. The porosity of the specimens was 0.55-0.75 from the theoretical. The pore diameter was adjusted to 0.5-0.05 μm

    Characteristics and Sinterability of Ceria Stabilized Zirconia Nanoparticles Prepared by Chemical Methods

    Get PDF
    Microwave assisted and molten salts synthesis were extended for preparation of ceria (10 mol%; 15 mol%) stabilized zirconia and their parameters and sinterability were compared with that of particles prepared by the sol-gel combustion method. As-prepared powders by using microwave assisted and sol-gel combustion synthesis contained single tetragonal ZrO2 phase but powders prepared by molten salts combustion method contained two ceria-stabilized tetragonal phases with different content of ceria. The crystallite size of the as-prepared zirconia phases was in the range of 3.2 – 9.4 nm and the average particles size is in the range of 7.6 – 24.6 nm depending on the synthesis method. Additional calcination of the powders up to 1000 °C led to increase of crystallite size in the range of 19 – 25 nm and decrease of specific surface area in the range of 18 – 21 m2/g and partial formation of monoclinic phase of ZrO2. Bulk materials with fine-grained microstructure (0.8 – 1.6 µm) and density in the range of 95.2 – 97.2 % were obtained by spark plasma sintering at 1280 – 1310 °C during 3 min. Nanoparticles prepared by microwave assisted synthesis showed better sinterability and higher density.DOI: http://dx.doi.org/10.5755/j01.ms.24.3.18288</p

    CyberEscape Approach to Advancing Hard and Soft Skills in Cybersecurity Education

    Get PDF
    Incorporating gamification elements and innovative approaches in training and educational programs are promising for addressing cybersecurity knowledge gaps. Cybersecurity training should consider a combination of hard and soft skills to deal with the diversity of cyber incidents. Therefore, this research aims to investigate if soft skills such as communication and collaboration enhances students’ performance in practical task execution and if the CyberEscape approach promotes students engagement and self-efficacy. This paper presents a cybersecurity game CyberEscape based on the intervention mapping methodology previously defined in the research. A virtualised infrastructure simulating the business environment works as a hybrid escape room. Physical resources and prepared information materials complement the game to support the scenario and ensure student engagement. The work employs a multiple-methods research approach. Participants filled out questionnaires in the pre-event and post-execution phases. Additionally, the participants were involved in small group semistructured interviews. Results of the pilot study show a positive impact on student competence improvement and increased interest in cybersecurity.acceptedVersio

    Synthesis and vibration spectroscopy of nano-sized manganese oxides

    Get PDF
    The present study has been supported by the Latvian National Research Program IMIS2. One of us, IS, was supported by MES RF RFMEFI61615X0064.X-ray diffraction, micro-Raman and the Fourier transform infrared spectroscopies as well as magnetometry measurements were performed on nanosized manganese oxides to probe their phase composition and magnetic properties. It was shown that the XRD method is less sensitive to phase composition of manganese oxide samples than spectroscopic methods. While in some samples the XRD method recognised only the manganosite MnO phase, the Raman and FT-IR methods revealed additionally the presence of the hausmannite Mn3O4 phase.Ministry of Education and Science RF RFMEFI61615X0064; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Synthesis and vibration spectroscopy of nano-sized manganese oxides

    Get PDF
    The present study has been supported by the Latvian National Research Program IMIS2. One of us, IS, was supported by MES RF RFMEFI61615X0064.X-ray diffraction, micro-Raman and the Fourier transform infrared spectroscopies as well as magnetometry measurements were performed on nanosized manganese oxides to probe their phase composition and magnetic properties. It was shown that the XRD method is less sensitive to phase composition of manganese oxide samples than spectroscopic methods. While in some samples the XRD method recognised only the manganosite MnO phase, the Raman and FT-IR methods revealed additionally the presence of the hausmannite Mn3O4 phase.Ministry of Education and Science RF RFMEFI61615X0064; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
    corecore