2,683 research outputs found
Performance Evaluation of Vision-Based Algorithms for MAVs
An important focus of current research in the field of Micro Aerial Vehicles
(MAVs) is to increase the safety of their operation in general unstructured
environments. Especially indoors, where GPS cannot be used for localization,
reliable algorithms for localization and mapping of the environment are
necessary in order to keep an MAV airborne safely. In this paper, we compare
vision-based real-time capable methods for localization and mapping and point
out their strengths and weaknesses. Additionally, we describe algorithms for
state estimation, control and navigation, which use the localization and
mapping results of our vision-based algorithms as input.Comment: Presented at OAGM Workshop, 2015 (arXiv:1505.01065
Factors that influence response classifications in chemotherapy treated patient-derived xenografts (PDX).
In this study, we investigated the impact of initial tumor volume, rate of tumor growth, cohort size, study duration, and data analysis method on chemotherapy treatment response classifications in patient-derived xenografts (PDXs). The analyses were conducted on cisplatin treatment response data for 70 PDX models representing ten cancer types with up to 28-day study duration and cohort sizes of 3-10 tumor-bearing mice. The results demonstrated that a 21-day dosing study using a cohort size of eight was necessary to reliably detect responsive models (i.e., tumor volume ratio of treated animals to control between 0.1 and 0.42)-independent of analysis method. A cohort of three tumor-bearing animals led to a reliable classification of models that were both highly responsive and highly nonresponsive to cisplatin (i.e., tumor volume ratio of treated animals to control animals less than 0.10). In our set of PDXs, we found that tumor growth rate in the control group impacted treatment response classification more than initial tumor volume. We repeated the study design factors using docetaxel treated PDXs with consistent results. Our results highlight the importance of defining endpoints for PDX dosing studies when deciding the size of cohorts to use in dosing studies and illustrate that response classifications for a study do not differ significantly across the commonly used analysis methods that are based on tumor volume changes in treatment versus control groups
Birational cobordism invariance of uniruled symplectic manifolds
A symplectic manifold is called {\em (symplectically) uniruled}
if there is a nonzero genus zero GW invariant involving a point constraint. We
prove that symplectic uniruledness is invariant under symplectic blow-up and
blow-down. This theorem follows from a general Relative/Absolute correspondence
for a symplectic manifold together with a symplectic submanifold. A direct
consequence is that symplectic uniruledness is a symplectic birational
invariant. Here we use Guillemin and Sternberg's notion of cobordism as the
symplectic analogue of the birational equivalence.Comment: To appear in Invent. Mat
Clinical assessment of fluorescence cystoscopy during transurethral bladder resection in superficial bladder cancer
The prognosis of superficial bladder cancer in terms of recurrence and disease progression is related to bladder tumor multiplicity and the presence of concomitant "planeâ tumors such as high-grade dysplasia and carcinoma in situ. This study in 33 patients aimed to demonstrate the role of fluorescence cystoscopy in transurethral resection of superficial bladder cancer. The method is based on the detection of protoporphyrin-IX-induced fluorescence in urothelial cancer cells by topical administration of 5-aminolevulinic acid. The sensitivity and the specificity of this procedure on apparently normal mucosa in superficial bladder cancer are estimated to be 82.9% and 81.3%, respectively. Thus, fluorescence cytoscopy is a simple and reliable method for mapping the bladder mucosa, especially in the case of multifocal bladder disease, and it facilitates the screening of occult dysplasi
Application of regulatory sequence analysis and metabolic network analysis to the interpretation of gene expression data
We present two complementary approaches for the interpretation of clusters of
co-regulated genes, such as those obtained from DNA chips and related methods.
Starting from a cluster of genes with similar expression profiles, two basic
questions can be asked:
1. Which mechanism is responsible for the coordinated transcriptional response
of the genes? This question is approached by extracting motifs that are shared
between the upstream sequences of these genes. The motifs extracted are putative
cis-acting regulatory elements.
2. What is the physiological meaning for the cell to express together these
genes? One way to answer the question is to search for potential metabolic
pathways that could be catalyzed by the products of the genes. This can be
done by selecting the genes from the cluster that code for enzymes, and trying
to assemble the catalyzed reactions to form metabolic pathways.
We present tools to answer these two questions, and we illustrate their use with
selected examples in the yeast Saccharomyces cerevisiae. The tools are available
on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/;
http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/)
On the Nature of the Frontal Zone of the Choctawhatchee Bay Plume in the Gulf of Mexico
River plumes often feature turbulent processes in the frontal zone and interfacial region at base of the plume, which ultimately impact spreading and mixing rates with the ambient coastal ocean. The degree to which these processes govern overall plume mixing is yet to be quantified with microstructure observations. A field campaign was conducted in a river plume in the northeast Gulf of Mexico in December 2013, in order to assess mixing processes that could potentially impact transport and dispersion of surface material near coastal regions. Current velocity, density, and Turbulent Kinetic Energy Values, Δ, were obtained using an Acoustic Doppler Current Profiler (ADCP), a Conductivity Temperature Depth (CTD) profiler, a Vertical Microstructure Profiler (VMP), and two Acoustic Doppler Velocimeters (ADVs). The frontal region contained Δ values on the order of 10â5 m2 sâ3, which were markedly larger than in the ambient water beneath (O 10â9 m2sâ3). An energetic wake of moderate Δ values (O 10â6 m2 sâ3) was observed trailing the frontal edge. The interfacial region of an interior section of the plume featured opposing horizontal velocities and a Δ value on the order of 10â6 m2 sâ3. A simplified mixing budget was used under significant assumptions to compare contributions from wind, tides, and frontal regions of the plume. The results from this order of magnitude analysis indicated that frontal processes (59%) dominated in overall mixing. This emphasizes the importance of adequate parameterization of river plume frontal processes in coastal predictive models
Gate-defined graphene double quantum dot and excited state spectroscopy
A double quantum dot is formed in a graphene nanoribbon device using three
top gates. These gates independently change the number of electrons on each dot
and tune the inter-dot coupling. Transport through excited states is observed
in the weakly coupled double dot regime. We extract from the measurements all
relevant capacitances of the double dot system, as well as the quantized level
spacing
Orientifolds, Unoriented Instantons and Localization
We consider world-sheet instanton effects in N=1 string orientifolds of
noncompact toric Calabi-Yau threefolds. We show that unoriented closed string
topological amplitudes can be exactly computed using localization techniques
for holomorphic maps with involution. Our results are in precise agreement with
mirror symmetry and large N duality predictions.Comment: 25 pages, 10 figures, published version; v4: typos correcte
- âŠ