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Abstract. An important focus of current research in the field of Mi-
cro Aerial Vehicles (MAVs) is to increase the safety of their operation
in general unstructured environments. Especially indoors, where GPS
cannot be used for localization, reliable algorithms for localization and
mapping of the environment are necessary in order to keep an MAV air-
borne safely. In this paper, we compare vision-based real-time capable
methods for localization and mapping and point out their strengths and
weaknesses. Additionally, we describe algorithms for state estimation,
control and navigation, which use the localization and mapping results of
our vision-based algorithms as input.

1 Introduction
In the last years, much effort was put into research in the field of (semi-)
autonomous Micro Aerial Vehicles (MAVs). Even though algorithms for au-
tonomous control and navigation exist, most MAVs can work autonomously
only in constrained environments (e.g., by using GPS, which is not available
indoors). As the usage of MAVs in challenging environments for inspection and
surveillance is a hot industrial issue, it is covered by the European Robotics
Challenges 4(EuRoC). They were announced in order to stimulate research and
development in robotics and support the transfer between academia and indus-
try. We are currently participating in one of the challenges, which is targeted
at Plant Servicing and Inspection using MAVs. In this paper, we evaluate algo-
rithms for vision-based localization and reconstruction, state estimation, control
and navigation using the simulation environment of the challenge.

For state estimation and control of the MAV, an accurate localization esti-
mate is necessary. Several approaches exist to do this using visual sensors. For
localization and reconstruction in real-time, a widely used system is PTAM [9].
PTAM uses a single camera as input and computes the pose of the camera and
a map of the environment simultaneously by using sparse feature points. A
different approach is proposed by Engel et al. [2]: Instead of using sparse image
features, they use the intensity values of most of the pixels of the image directly
to align the image to 3D points accordingly and estimate the pose of the camera.
As the extraction and matching of features usually takes a lot of time, using the
image intensities directly speeds up the localization process. However, as both
of these approaches are using just a single camera, the scale of the reconstruc-
tion and localization cannot be determined and they may have problems with
certain movements (e.g., pure rotations). In contrast, Geiger et al. [6] use stereo
images as input and match sparse image features in order to get the relative
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pose estimate. Having the depth data from the stereo image pair, it is possible
to determine the correct scale and to handle pure rotations. However, their
approach does only perform localization and no consistent reconstruction of the
environment is created.

In our evaluation, we will compare a direct approach with a feature-based
approach and point out their benefits and drawbacks.

To plan flying trajectories of an MAV, we need an accurate reconstruction of
its environment. The process of generating this reconstruction is called mapping.
A well established mapping framework is OctoMap [7] which uses range scans
with known origins to model the world. A probabilistic occupancy estimation
allows it to model occupied, free and also unknown areas. These areas are
represented by a voxel based volumetric 3D model that is stored in an octree.
OctoMap performs very well if it is fed with accurate dense range measurements.
If these measurements are too sparse, many voxels will be labeled as unknown,
which is due to the lack of interpolation. For obstacle avoidance this behavior
is welcome because it denies any navigation through unknown space.

Our proposed approach contrasts from OctoMap in using sparse range mea-
surements only. We compare both methods in terms of speed and accuracy
using the EuRoC mapping evaluation framework.

In this paper, we describe our algorithms used in the European Robotics
Challenge 3 Simulation Stage and especially evaluate the performance of the
vision-based algorithms compared to others. As the challenge was divided into
four tasks, we first describe and evaluate our solutions for the tasks localization
and mapping. Then, we show how the results of the first two tasks could be
used for state estimation, control and trajectory planning. This paper extends
an extended abstract already submitted to the Austrian Robotics Workshop
[13], where the focus was set more intensively on state estimation, control and
trajectory planning.

2 Vision-Based Localization and Mapping
The first part of the simulation contest was split into the tasks of vision-based
localization and mapping. A robust solution for both tasks is essential to achieve
an MAV capable of safe autonomous navigation in GPS-denied environments.
2.1 Localization
In this task, the goal was to localize the MAV using stereo images and synchro-
nized IMU data only. The implemented solution had to run on a low-end CPU
(similar to a CPU onboard an MAV) in real-time. The results were evaluated
on datasets with varying difficulty (see Fig. 1) in terms of computation speed
and local accuracy. We compared two purely visual algorithms for this task,
which are presented in this section.

Our first approach is a visual odometry system based on libviso2 [6]. It
is a keypoint-based approach which applies a combination of blob and corner
detectors for keypoint extraction. First, feature points are detected. However,
as the resulting quantity of points is high, non-maximum suppression is applied
on the feature points and bucketing is used to spread them uniformly over the
image domain. Next, quad matching is performed, where feature points of
the current and previous stereo pair are matched in a loop between the four
frames. A match is found if the loop is closed and the first and last feature in
the matching loop are the same. Finally, pose estimation is done by using a
RANSAC scheme for the selection of the feature points and by minimizing the
reprojection error using Gauss-Newton optimization.

The second algorithm implements a dense direct approach to perform visual
odometry and is compared against the sparse approach. In our implementation,



Figure 1: Input data for the localization task. Left: Image from the simple
dataset. Right: Image from the difficult dataset. In comparison to the left
image, the right image includes more poorly textured parts, over- and underex-
posed regions and more motion blur.
we compute a dense depth map for every keyframe using a fast depth map com-
putation algorithm and estimate the pose of the frames between keyframes by
minimizing the photometric error similar to [8]. To solve the minimization prob-
lem, the Levenberg-Marquardt algorithm is used. A new keyframe is created if
the photometric error gets too big or if the rotational or translational movement
from the previous keyframe to the current frame is exceeding a threshold.
2.2 Mapping
To successfully detect obstacles and circumnavigate them, an accurate recon-
struction of the environment is needed. The goal of this task was to generate
an occupancy grid of high accuracy in a limited time frame.

For our solution we only process frames from the stereo stream whose pose
change to the previously selected keyframe exceeds a given threshold. From
these keyframes we collect sparse features (approximately 100) that are ex-
tracted and matched using libviso2 [6]. Using these features, we unproject 3D
points and store them in a global point cloud with visibility information. Af-
ter receiving the last frame, we put all stored data into a multi-view meshing
algorithm based on [10]. It is an energy minimization based method that uses
graph cuts. The meshing algorithm creates a Delaunay triangulation of the 3D
points. A 3D Delaunay triangulation consists of vertices, facets and tetrahedra.
A graph cut algorithm is applied which labels the tetrahedra of this triangula-
tion as inside or outside. All facets that separate two tetrahedra with different
labels compose the final surface, which we finally convert to an occupancy grid
for evaluation. An example of our mapping process can be seen in Fig. 2.

We compare this approach with a second approach that uses the OctoMap [7]
mapping framework. This framework needs to be fed with range scans from
known origins, for which we use libELAS [5]. We have chosen libELAS because
it is freely available and highly optimized to run fast on a single CPU. It also
performs well on the KITTI Stereo-Evaluation benchmark, where it takes 48th
place [1]. There it is one of the fastest methods that use CPUs only, thus it is
well balanced in terms of speed and accuracy.

For both approaches we use the same set of keyframes and compare their
results.
2.3 Results
For each task, the final scoring of the EuRoC was calculated using three different
image datasets of varying difficulty and using the same computer for all the
participants. Three test datasets of similar characteristics were provided to the
contestants, which are used to perform the evaluations in this paper. The final
scores of the EuRoC resulted in performance metrics that are comparable to



Figure 2: Mapping process. Left: 3D points and their keyframe camera poses.
Middle: Constructed mesh. Right: Evaluated occupancy grid (scene height
coded by color - from blue/low to red/high) .
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Figure 3: Trajectories in x- and y-direction (without height) of the evaluated
approaches on Dataset 3 (difficult dataset). Our direct approach (blue) has an
absolute translational error of 2.0781 m at the end of the trajectory, libviso2 [6]
with pixel accuracy (red) has an error of 2.4128 m and set to subpixel accuracy
(green), it reaches an error of 1.1456 m.

performing the evaluation on these test datasets. The datasets contain stereo
images with a resolution of 752x480 pixels each, with a baseline of 11 cm and a
framerate of 20Hz.

We performed our computations on a computer with a Quad Core i7-2630QM,
@ 2.0GHz. However, in accordance to the EuRoC, our solutions run in a virtual
machine just using two cores of this processor.

For localization, we evaluate our two proposed algorithms in terms of speed
and local accuracy on the test datasets. The three datasets have varying dif-
ficulty in terms of lightning conditions, scene depth, texture richness of the
environment and motion blur (see Fig. 1). The difficulty increases from Dataset
1 to Dataset 3.

The sparse, feature-based approach is implemented using libviso2 [6], a
highly optimized visual odometry library. For the dense, direct approach, we
use OpenCV’s block matching to compute a dense depth map and our own
dense pose tracker similar to [8], which is also implemented efficiently using
SSE instructions for most of the computational expensive tasks. Fig. 3 shows
the computed trajectories of the used approaches.

The local accuracy is evaluated by computing the relative error as defined
in the KITTI vision benchmark suite [4]. As we only have an exact ground
truth for the 3D position and not for the rotation, only the translational error is
evaluated. We measure the relative translational error of a trajectory distance
of 2, 5, 10, 15, 20, 25, 60 and 75 meters and average these values to get a
final translational error. The average runtime and translational errors for each
dataset can be found in Table 1.



Dataset 1 Dataset 2 Dataset 3
runtime errtrans runtime errtrans runtime errtrans

libviso2 - pixel 26 ms 1.8 % 26 ms 3 % 23 ms 6.2 %
libviso2 - subpixel 34 ms 1.6 % 33 ms 1.4 % 30 ms 3.4 %

direct 49 ms 1.5 % 52 ms 2.2 % 52 ms 5.9 %

Table 1: Average runtime per frame and average translational error. libviso2 [6]
with subpixel accuracy outperforms our direct approach on Dataset 2 and 3.
Even though our direct approach reaches a slightly higher accuracy on Dataset
1, the runtime is higher compared to libviso2.

Relative translational error (in %)
2 m 5 m 10 m 15 m 20 m 25 m 60 m 75 m

libviso2 - pixel 7.7 6.6 6.3 6.9 7.1 7.0 4.6 3.6
libviso2 - subpixel 4.5 3.6 3.4 3.6 3.6 3.5 2.8 2.1

direct 11.8 7.6 5.9 5.6 5.7 5.6 2.9 2.4

Table 2: Relative translational error with varying trajectory distances for
Dataset 3. The results of the direct approach contain more errors in small dis-
tances, while the accumulated error of libviso2 [6] in longer distances is similar
or higher.

The fastest approach is libviso2 with pixel accuracy. It needs approximately
half of the processing time of the dense approach but is slightly worse in terms of
local accuracy on all datasets. However, using libviso2 with subpixel accuracy is
a good trade-off in terms of runtime and accuracy. It is still faster than the dense
approach, and reaches a better accuracy in two of three datasets. Therefore, we
chose to use libviso2 in our final solution.

Table 2 illustrates the individual strengths and weaknesses of both ap-
proaches. Especially when using images with insufficient texture and/or con-
taining motion blur (as in Dataset 3), jumps occur occasionally in the trajectory
of the direct approach. Therefore, the error in small distances is bigger than
compared to libviso2. Contrary, as libviso2 estimates the relative pose from
frame to frame and does not use keyframes, the accumulated error over bigger
distances is similar or higher even though the error of small distances is much
lower.

For the mapping task, the datasets contain a stereo stream and additionally
the full 6-DoF poses captured by a Vicon system. The evaluation is done based
on occupancy grids for three datasets (1 .. 3) of an indoor scene with increasing
difficulties. At the lowest difficulty, the sensor moves slowly and smoothly and
the room is well and homogeneously illuminated. The captured elements also
have a good texture and the scene mainly consists of planar surfaces. With
increasing difficulty, the motion of the sensor changes to a jerky up-and-down
movement with a lot of rotational change only. In addition, the illumination
changes frequently and the captured elements consist of fine parts that are
challenging to reconstruct (e.g. a ladder). In all three datasets no moving
objects are present. The ground truth occupancy grids were captured with
a 3D laser scanner. The accuracy is evaluated by shifting a bounding box
containing the MAV through the ground truth and the computed occupancy
grids simultaneously. For each position of the bounding box a collision check in
both occupancy grids is performed. This check can have four different states:
correct-collision, missed-collision, correct-free and false-collision. The overall
accuracy is calculated using the Matthews correlation coefficient (MCC). Its
value can be between −1.0 and 1.0, where 1.0 indicates that all collision checks



Accuracy[MCC] Runtime[s]
Dataset Frames Key-Frames OctoMap Ours OctoMap Ours

+libELAS +libELAS
1 2839 214 0.514 0.886 73 30
2 1559 284 0.589 0.896 82 23
3 2079 432 0.581 0.938 115 31

Table 3: Accuracy and runtime measurements of our approach and Oc-
toMap [7]+libELAS [5].

Dataset 1 Dataset 2 Dataset 3
OctoMap Ours OctoMap Ours OctoMap Ours
+libELAS +libELAS +libELAS

false-collision 27.57 5.78 23.76 4.67 24.17 2.75
missed-collision 0.00 0.11 0.00 0.67 0.00 0.39
correct-collision 54.13 54.02 51.84 51.17 52.30 51.90
correct-free 18.29 40.07 24.40 43.49 23.53 44.95

Table 4: Detailed collision check results of our approach and Oc-
toMap [7]+libELAS [5]. All values are in percent[%] and rounded to two deci-
mals. A high false or missed-collision rate decreases the MCC, correct recogni-
tion rates increase it.

have the correct state.
Table 3 shows the overall results. Our approach significantly outperforms

OctoMap [7] +libELAS [5] in terms of speed. This is mainly caused by the
runtime of the dense range measurement extraction. Although libELAS is fast,
it needs 250 ms on average for a dense range measurements extraction. The
sparse extraction performed by libviso2 [6] for our approach needs 50 ms on
average per key frame.

In terms of reconstruction accuracy, our approach outperforms OctoMap
+libELAS too. If we look at the exact figures in Table 4, we see that Oc-
toMap+libELAS always tends to be on the safe side. It never marks an occu-
pied voxel as free, thus it never misses a collision. This circumstance is entirely
desired for a secure navigation of an MAV through its environment. However, it
marks many free voxels as occupied which could be used for path optimization.
Our approach misses some collisions but it does not block as many feasible
paths. This results in a significantly lower MCC score for all three datasets
compared to our approach. The main advantage of our approach is a highly
accurate map at a low computational cost.
3 State Estimation, Control and Navigation
The second track aimed at the development of a control framework to enable the
MAV to navigate through the environment fast and safely. For this purpose,
a simulation environment was provided by the EuRoC organizers where the
hexacopter MAV dynamics were simulated in ROS/Gazebo.

The tasks’ difficulty increased gradually from simple hovering to collision-free
point-to-point navigation in a simulated industry environment. The evaluation
included the performance under influence of constant wind, wind gusts as well
as switching sensors.
3.1 State Estimation and Control
For state estimation, the available sensor data is a 6DoF pose estimate from an
onboard virtual vision system (the data is provided at 10Hz and with 100ms
delay), as well as IMU data (accelerations and angular velocities) at 100Hz and
with negligible delay, but slowly time-varying bias. Pose estimates returned



from task 1 could also be used here. However, for a comparable evaluation,
synthetic data was used.

During flight, the position and orientation are tracked using a Kalman-
filter–like procedure based on a discretized version of [12]: the IMU sensor data
are integrated using Euler discretization (prediction step); when an (outdated)
pose information arrives, it is merged with an old pose estimate (correction step)
and all interim IMU data is re-applied to obtain a current estimate. Orientation
estimates are merged by turning partly around the relative rotation axis. The
corresponding weights are established a priori as the steady-state solution of an
Extended Kalman Filter simulation.

For control, a quasi-static feedback linearization controller with feedforward
control similar to [3] was implemented. First, the vertical dynamics are used
to parametrize the thrust; then, the planar dynamics are linearized using the
torques as input. With this controller, the dynamics around a given trajectory
in space can be stabilized via pole placement using linear state feedback; an
additional PI-controller is necessary to compensate for external influences like
wind.

The trajectory is calculated online and consists of a point list together with
timing information. A quintic spline is fitted to this list to obtain smooth
derivatives up to the fourth order, guaranteeing jerk and snap free trajectories.
3.2 Trajectory planning
Whenever a new goal position is received, a new path is delivered to the con-
troller. In order to allow fast and safe navigation, the calculated path should
stay away from obstacles and be smooth. Our approach is similar to the ap-
proach proposed by Richter et al. [14], where a trajectory is planned in 3D space
based on a traditional planning algorithm and, then, used to fit a high order
polynomial.

Our method proceeds as follows: First, the path that minimizes a cost func-
tion is planned, which penalizes proximity to obstacles, length and unnecessary
changes in altitude. Limiting the cost increase, the raw output path from the
planning algorithm is shortened. Finally, a speed plan is calculated based on
the path curvature. The resulting path and timing information are used to fit
the quintic spline used for feedforward control.

As input, we get a static map provided as an Octomap [7]. This map has
similar properties as the map computed in task 2. However, in order to per-
form a comparable evaluation, synthetic data was used. To take advantage of
the environment’s staticity, we selected a Probabilistic Roadmap (PRM) based
algorithm. As implementation, we used PRMStar from the OMPL library [15].
The roadmap and an obstacle proximity map are calculated prior to the mission.
For the latter the dynamicEDT3D library [11] is used.

3.3 Results
The developed control framework achieves a position RMS error of 0.055m and
an angular velocity RMS error of 0.087 rad/s in stationary hovering. The simu-
lated sensor uncertainties are typical of a multicopter such as the Asctec Firefly.
The controlled MAV is able to reject constant and variable wind disturbances
in less than four seconds.

Paths of 35m are planned in 0.75 s and can be safely executed in 7.55 s to
8.8 s with average speeds of 4.2m/s and peak speeds of 7.70m/s.

4 Conclusions
We evaluated algorithms for vision-based real-time localization and mapping,
which are suitable for low-end on-board computers of MAVs. Considering the



difficulty of the image datasets of the EuRoC challenge, these methods have
proven their reliability to provide measurements to the proposed methods for
state estimation, control and navigation. With this knowledge, we successfully
participated in the EuRoC Simulation Contest. Future work will include de-
ploying those algorithms onboard an MAV to achieve autonomous navigation.
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