422 research outputs found
The effect of increasing temperature on algae-fish interactions on coral reefs
Alexia Graba-Landry investigated the effect of increasing temperature to algae-fish interactions on coral reefs. She found that algae were more sensitive to increases in temperature than fishes suggesting that algal overgrowth of coral reefs into the future may be less likely than previously assumed
On modeling chronic detachment of periphyton in artificial rough, open channel flow
Periphyton communities, which are native to river beds, serve as a functional indicator of river health but remain one of the least-studied communities despite the significant increase in the examination of aquatic microbial communities in recent years. In this study, we tested the relevance of three formulations of the chronic detachment term in a simple model for the biomass dynamics of periphyton. Numerical simulations of the periphyton biomass dynamics were performed by using three different descriptors for the flow conditions: the discharge Q, the friction velocity u⁄, and the roughness Reynolds number k+ = u⁄ks/m (where m is water kinetic viscosity and ks is the Nikuradse equivalent sand roughness). Comparisons of numerical simulation results with experimental data from literature revealed chronic detachment to be better simulated by taking the roughness Reynolds number as the external variable of detachment. These results support the idea that transport phenomena that occur in the nearbed layer, e.g. chronic detachment of periphyton matter or vertical transport of nutrients and pollutants in submerged aquatic canopies, are not related to a single turbulence descriptor such as the friction velocity u⁄. Its description requires at least two descriptors, here the friction velocity u⁄ and the Nikuradse equivalent sand roughness ks, which depend on the initial form and dimensions of the colonized substratum, and its changes owing to the thickness, resistance, and composition of the epilithic matter
Interaction between local hydrodynamics and algal community in epilithic biofilm
Interactions between epilithic biofilm and local hydrodynamics were investigated in an experimental flume. Epilithic biofilm from a natural river was grown over a 41 day period in three sections with different flow velocities (0.10, 0.25 and 0.40 m s-¹ noted LV, IV and HV respectively). Friction velocities u* and boundary layer parameters were inferred from PIV measurement in the three sections and related to the biofilm structure. The results show that there were no significant differences in Dry Mass and Ash-Free Dry Mass (g m-²) at the end of experiment, but velocity is a selective factor in algal composition and the biofilms' morphology differed according to differences in water velocity. A hierarchical agglomerative cluster analysis (BrayeCurtis distances) and an Indicator Species Analysis (IndVal) showed that the indicator taxa were Fragilaria capucina var. mesolepta in the lowvelocity (u* = ¼ 0.010e0.012 m s-¹), Navicula atomus, Navicula capitatoradiata and Nitzschia frustulum in the intermediate velocity (u* = ¼ 0.023e0.030 m s-¹) and Amphora pediculus,
Cymbella proxima, Fragilaria capucina var. vaucheriae and Surirella angusta in the high-velocity (u* = ¼ 0.033e0.050m s-¹) sections. A sloughing test was performed on 40-day-old biofilms in order to study the resistance of epilithic biofilms to higher hydrodynamic regimes. The results showed an inverse relationship between the proportion of detached biomass and the average value of friction velocity during growth. Therefore, water velocity during epilithic biofilm growth conditioned the structure and algal composition of biofilm, as well as its response (ability to resist) to higher shear stresses. This result should be considered in modelling epilithic biofilm dynamics in streams subject to a variable hydrodynamics regime
Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay
International audienceBACKGROUND: Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. RESULTS: Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. CONCLUSION: Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development
Modélisation des interactions biophysiques entre la dynamique du biofilm épilithique et l'hydrodynamique locale
Les interactions entre l'hydrodynamique locale, la structure et la dynamique temporelle du biofilm épilithique ont été étudiées par analyse et modélisation de séries temporelles de biomasse et de la composition algale sur trois séries de données obtenues en canaux expérimentaux et in situ. Deux séries temporelles ont été obtenues dans des conditions contrôlées à l'Institut de Mécanique des Fluides de Toulouse: la première dans un canal à vitesse constante d'écoulement, et la second dans un canal à trois sections avec trois vitesses d'écoulement incluant un test d'arrachage du biofilm en fin d'expérience. La dernière série temporelle a été collectée sur un banc de galet de la Garonne (France) en amont de Toulouse durant la période de Septembre 2008 à Septembre 2009. Trois formulations décrivant le processus de détachement chronique du biofilm ont été confrontées à la première série de données. Ces trois formulations sont respectivement fonction du débit Q, de la vitesse de frottement u* et du nombre de Reynolds rugueux k+. Elles sont intégrées dans un modèle simple décrivant la dynamique de croissance du biofilm épilithique comme un équilibre entre une croissance phototrophique et une perte chronique dépendante de l'hydrodynamique. Les résultats d'application de ces trois formulations à la première série de données obtenues en canal, ont montré que la dynamique du biofilm épilithique est mieux reproduite en considérant comme variables externes de forçage du détachement chronique, des descripteurs de l'hydrodynamique locale et de la turbulence en proche parois que sont la vitesse de frottement (u*) et la rugosité turbulente (k+). Néanmoins l'utilisation de la rugosité turbulente donne le meilleur résultat car ce descripteur tient compte non seulement de l'effet de l'hydrodynamique mais aussi de l'évolution de la forme et des dimensions du substratum qui est fonction de l'épaisseur et de la structure du biofilm qui le colonise. L'analyse de la série temporelle obtenue dans le canal à trois vitesses d'écoulement a révélé que la structure du biofilm, sa composition algale et sa résistance au détachement catastrophique étaient fortement conditionnées par les caractéristiques hydrodynamiques locales subies pendant la période de croissance. Ceci met en évidence l'importance de la prise en compte du rôle de cette hydrodynamique locale dans la modélisation du processus de détachement catastrophique associé aux crues, et plus généralement, son rôle dans les différents processus régissant la dynamique temporelle du biofilm épilithique. En tenant compte des résultats obtenus dans les expérimentations et modélisations des interactions biofilm/écoulement dans les canaux expérimentaux précédemment décrites, une nouvelle approche est utilisée pour la modélisation de la série temporelle obtenue in situ. Cette approche tient compte de l'effet des interactions hydrodynamiques locales/structure et composition du biofilm sur sa dynamique temporelle et de la pression de broutage par les invertébrés aquatiques. Cette nouvelle approche permet ainsi de reproduire tous les cycles de croissance et de détachement du biofilm observés in situ en prenant en compte l'effet de la température, de l'intensité lumineuse, des différents processus de détachement (chronique, catastrophique et autogénique) ainsi que la perte par broutage. L'action par broutage direct semble être négligeable face à l'action indirecte des invertébrés liée à leurs déplacements qui déstructurent les couches algo-bactériennes et modifient les capacités d'accrochage du biofilm au substrat.Interactions between local hydrodynamics and epilithic biofilm structure and temporal dynamics have been investigated through analyses and modeling of temporal data of biomass, algal composition and local hydrodynamics evolution obtained in experimental channels and in situ. Two of the used temporal data were obtained in controlled conditions at the Institut de Mécanique des Fluids de Toulouse: the first one in a channel with constant flow velocity, and the second in a channel with three sections and three different flow velocities including a test of detachment of the epilithic biomass at the end of the experiment. The last temporal data was collected on a bench of pebble of the Garonne (France) upstream to Toulouse during period from September, 2008 till September, 2009. Three formulations of biomass chronic detachment that integrated successively the discharge Q, the friction velocity u* and the roughness Reynolds number k+=u* ks /v (v=water kinematic viscosity) as descriptors of flow conditions have been confronted to the first series of data. These formulations were integrated into a simple model describing the dynamics of growth of epilithic biomass as a balance between phototrophic growth and a chronic loss dependent on the hydrodynamics. The results of application of these three formulations to the first series of data showed that the dynamics of the epilithic biomass is better reproduced by considering as external variable of forcing the chronic detachment, the friction velocity (u*) and the turbulent roughness (k+) that are descriptors of local hydrodynamics and turbulence in the near bed region. Nevertheless the use of the turbulent roughness gives the best result because this descriptor takes into account not only the effect of the hydrodynamics but also the evolution of the shape and the dimensions of the substratum according to the thickness and the structure of the biofilm which colonizes it. The analysis of the temporal series obtained in the channel with three flow velocities revealed that the structure, the algal composition and its resistance in the catastrophic detachment of the epilithic biomass were strongly conditioned by the local hydrodynamics endured during the period of growth. This brings to light the importance and the role of this local hydrodynamics in modeling the catastrophic detachment process associated with the floods and more generally its role in the various processes governing the temporal dynamics of epilithic biomass. Considering the previously described results obtained in the experiments and the in the modeling of the biofilm / flow interactions in the experimental channels, a new approach was used for modeling the in situ temporal series. This approach takes into account the effect of the interactions between local hydrodynamics /structure and composition of the biofilm on its temporal dynamics and the grazing pressure of the aquatic invertebrates. This new approach allows reproducing all the growth and detachment cycles of epilithic biofilm observed in situ. This, by considering the effects of temperature, luminous intensity, various detachment processes (chronic, catastrophic and autogenic), as well as the loss by grazing pressure. This last one seems to be unimportant in front of the indirect action of the invertebrates related to their movements which disintegrate the alo-bacterial layers and modify their capacities of to hang on the substrata
The impact of cooling methods on the maximum temperature of the processed object during side milling
The Hexapeptide and Linker Regions of the AbdA Hox Protein Regulate Its Activating and Repressive Functions
AbstractThe Hox family transcription factors control diversified morphogenesis during development and evolution. They function in concert with Pbc cofactor proteins. Pbc proteins bind the Hox hexapeptide (HX) motif and are thereby thought to confer DNA binding specificity. Here we report that mutation of the AbdA HX motif does not alter its binding site selection but does modify its transregulatory properties in a gene-specific manner in vivo. We also show that a short, evolutionarily conserved motif, PFER, in the homeodomain-HX linker region acts together with the HX to control an AbdA activation/repression switch. Our in vivo data thus reveal functions not previously anticipated from in vitro analyses for the hexapeptide motif in the regulation of Hox activity
Cross-Shelf Differences in the Response of Herbivorous Fish Assemblages to Severe Environmental Disturbances
Cross-shelf differences in coral reef benthic and fish assemblages are common, yet it is unknown whether these assemblages respond uniformly to environmental disturbances or whether local conditions result in differential responses of assemblages at different shelf positions. Here, we compare changes in the taxonomic and functional composition, and associated traits, of herbivorous reef fish assemblages across a continental shelf, five years before and six months after two severe cyclones and a thermal bleaching event that resulted in substantial and widespread loss of live hard coral cover. Each shelf position maintained a distinct taxonomic assemblage of fishes after disturbances, but the assemblages shared fewer species among shelf positions. There was a substantial loss of species richness following disturbances within each shelf position. Total biomass of the herbivorous fish assemblage increased after disturbances on mid- and outer-shelf reefs, but not on inner-shelf reefs. Using trait-based analyses, we found there was a loss of trait richness at each shelf position, but trait specialisation and originality increased on inner-shelf reefs. This study highlights the pervasiveness of extreme environmental disturbances on ecological assemblages. Whilst distinct cross-shelf assemblages can remain following environmental disturbances, assemblages have reduced richness and are potentially more vulnerable to chronic localised stresses
- …