196 research outputs found

    The Pathogenic TSH β-Subunit Variant C105Vfs114X Causes a Modified Signaling Profile at TSHR

    Get PDF
    1) Background: Central congenital hypothyroidism (CCH) is a rare endocrine disorder that can be caused by mutations in the β-subunit of thyrotropin (TSHB). The TSHB mutation C105Vfs114X leads to isolated thyroid-stimulating-hormone-(TSH)-deficiency and results in a severe phenotype. The aim of this study was to gain more insight into the underlying molecular mechanism and the functional effects of this mutation based on two assumptions: a) the three-dimensional (3D) structure of TSH should be modified with the C105V substitution, and/or b) whether the C-terminal modifications lead to signaling differences. 2) Methods: wild-type (WT) and different mutants of hTSH were generated in human embryonic kidney 293 cells (HEK293 cells) and TSH preparations were used to stimulate thyrotropin receptor (TSHR) stably transfected into follicular thyroid cancer cells (FTC133-TSHR cells) and transiently transfected into HEK293 cells. Functional characterization was performed by determination of Gs, mitogen activated protein kinase (MAPK) and Gq/11 activation. 3) Results: The patient mutation C105Vfs114X and further designed TSH mutants diminished cyclic adenosine monophosphate (cAMP) signaling activity. Surprisingly, MAPK signaling for all mutants was comparable to WT, while none of the mutants induced PLC activation. 4) Conclusion: We characterized the patient mutation C105Vfs114X concerning different signaling pathways. We identified a strong decrease of cAMP signaling induction and speculate that this could, in combination with diverse signaling regarding the other pathways, accounting for the patient's severe phenotype

    The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency

    Get PDF
    OBJECTIVE. Hypospadias is a frequent congenital anomaly but in most cases an underlying cause is not found. Steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) is a key regulator of human sex development and an increasing number of SF-1 (NR5A1) mutations are reported in 46,XY disorders of sex development (DSD). We hypothesized that NR5A1 mutations could be identified in boys with hypospadias. DESIGN AND METHODS. Mutational analysis of NR5A1 in 60 individuals with varying degrees of hypospadias from the German DSD network. RESULTS. Heterozygous NR5A1 mutations were found in three out of 60 cases. These three individuals represented the most severe end of the spectrum studied as they presented with penoscrotal hypospadias, variable androgenization of the phallus and undescended testes (three out of 20 cases (15%) with this phenotype). Testosterone was low in all three patients and inhibin B/anti-Müllerian hormone (AMH) were low in two patients. Two patients had a clear male gender assignment. Gender re-assignment to male occurred in the third case. Two patients harbored heterozygous nonsense mutations (p.Q107X/WT, p.E11X/WT). One patient had a heterozygous splice site mutation in intron 2 (c.103-3A/WT) predicted to disrupt the main DNA-binding motif. Functional studies of the nonsense mutants showed impaired transcriptional activation of an SF-1-responsive promoter (Cyp11a). To date, adrenal insufficiency has not occurred in any of the patients. CONCLUSIONS. SF-1 (NR5A1) mutations should be considered in 46,XY individuals with severe (penoscrotal) hypospadias, especially if undescended testes, low testosterone, or low inhibin B/AMH levels are present. SF-1 mutations in milder forms of idiopathic hypospadias are unlikely to be common

    Plant functional types and elevated CO2: A method of scanning for causes of community alteration

    Get PDF
    In this paper, a general method for an a posteriori plant functional type (PFT) analysis of global change effects on community composition is developed. We apply the method to a case study, specifically the Giessen-FACE experiment. This experiment involves a Central European meadow that has been exposed to moderate CO2-enrichment since May 1998.The method for an a posteriori PFT-analysis: The method consists of four working steps and uses a combination of standard gradient analysis and Random Forests (RF). (1) The trait composition of the species is studied using Principal Components Analysis. Species trait information is gathered from databases. Natural PFT, i.e. groups of species with similar trait-sets, are identified specifically for the community under study. (2) A ranking of the species according to standardized/absolute CO2 abundance response is obtained from Redundancy Analysis. Initially, species with a response above or below the median are grouped into three response groups (RG) each having similar behaviour, i.e. positive/negative or no-response. (3) The outlyingness measure of RF is used to shift RG boundaries until satisfactory RG homogeneity is achieved. RF is utilized to find the best traits for the RG classification. The behaviour of species representative of the RG is derived from RF class centers. (4) From knowledge gained in steps 1-3, hypotheses about the causes underlying the community alteration are built. Strengths/weaknesses of the method are discussed.Application of the method to the case study: The community consists of three natural PFT. Five species are summer-green forbs of varying competitiveness. Four species are evergreen ruderal forbs characterized as (semi-) basal rosette plants. The third natural PFT contains evergreen, more or less competitive species, mostly grasses, but also a few forbs.Negative standardized CO2-response was practically restricted to two natural PFT, i.e. the summer-greens, irrespective of their competitiveness, and the evergreen ruderals. Standard positive response covered part of the evergreen competitive natural PFT. Among them was Glechoma hederacea, one of the forbs with the greatest similarity to grasses. Two hypotheses were formulated to explain the response pattern: (1) Summer-greens lost in competition with evergreens, because the annual time-integral they can use for enhanced growth was more limited with year-round CO2-enrichment. (2) As rosette plants, ruderal evergreens lagged behind evergreen competitors because periods with full sunlight, which enabled them to gain additional carbon, were shorter for them.Absolute responses were additionally dependent on dominance patterns. The most striking difference to standard responses was the restriction of positive response to (sub-)dominant grasses

    The soil microbiome at the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment

    Get PDF
    The soil bacterial community at the Giessen free-air CO2 enrichment (Gi-FACE) experiment was analysed by tag-sequencing of the 16S rRNA gene. No substantial effects of CO2 levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition. Different groups within the Acidobacteria and Verrucomicrobia phyla were affected differently by soil moisture content. These results suggest that modest increases in atmospheric CO2 may cause only minor changes in soil bacterial community composition and indicate that the functional responses of the soil community to CO2 enrichment previously reported at Gi-FACE are due to other factors other than changes in bacterial community composition. These results suggest that modest increases in atmospheric CO2 may cause only minor changes in soil bacterial community composition and indicate that the soil functional responses to CO2 enrichment previously reported at Gi-FACE are due to factors other than changes in bacterial community composition. The effects of the moisture gradient revealed new information about the relationships between poorly known Acidobacteria and Verrucomicrobia and soil moisture content. This study contrasts with the relatively small number of other temperate grassland FACE microbiome studies in the use of moderate CO2 enrichment and the resulting minor changes in the soil microbiome. Thus, it will facilitate the development of further climate change mitigation studies. In addition, the moisture gradient found at Gi-FACE contributes new to knowledge in soil microbial ecology, particularly regarding the abundance and moisture relationships of the soil Verrucomicrobia

    A role for β-melanocyte-stimulating hormone in human body-weight regulation

    Get PDF
    SummaryPro-opiomelanocortin (POMC) expressing neurons mediate the regulation of orexigenic drive by peripheral hormones such as leptin, cholecystokinin, ghrelin, and insulin. Most research effort has focused on α-melanocyte-stimulating hormone (α-MSH) as the predominant POMC-derived neuropeptide in the central regulation of human energy balance and body weight. Here we report a missense mutation within the coding region of the POMC-derived peptide β-MSH (Y5C-β-MSH) and its association with early-onset human obesity. In vitro and in vivo data as well as postmortem human brain studies indicate that the POMC-derived neuropeptide β-MSH plays a critical role in the hypothalamic control of body weight in humans

    Management of primary hypothyroidism: statement by the British Thyroid Association Executive Committee.

    Get PDF
    The management of primary hypothyroidism with levothyroxine (L-T4) is simple, effective and safe, and most patients report improved well-being on initiation of treatment. However, a proportion of individuals continue to suffer with symptoms despite achieving adequate biochemical correction. The management of such individuals has been the subject of controversy and of considerable public interest. The American Thyroid Association (ATA) and the European Thyroid Association (ETA) have recently published guidelines on the diagnosis and management of hypothyroidism. These guidelines have been based on extensive reviews of the medical literature and include sections on the role of combination therapy with L-T4 and liothyronine (L-T3) in individuals who are persistently dissatisfied with L-T4 therapy. This position statement by the British Thyroid Association (BTA) summarises the key points in these guidelines and makes recommendations on the management of primary hypothyroidism based on the current literature, review of the published positions of the ETA and ATA, and in line with best principles of good medical practice. The statement is endorsed by the Association of Clinical Biochemistry, (ACB), British Thyroid Foundation, (BTF), Royal College of Physicians (RCP) and Society for Endocrinology (SFE)

    Ring Finger Protein 11 Inhibits Melanocortin 3 and 4 Receptor Signaling

    Get PDF
    Intact melanocortin signaling via the G protein-coupled receptors (GPCRs), melanocortin receptor 4 (MC4R), and melanocortin receptor 3 (MC3R) is crucial for body weight maintenance. So far, no connection between melanocortin signaling and hypothalamic inflammation has been reported. Using a bimolecular fluorescence complementation library screen, we identified a new interaction partner for these receptors, ring finger protein 11 (RNF11). RNF11 participates in the constitution of the A20 complex that is involved in reduction of tumor necrosis factor α (TNFα)-induced NFκB signaling, an important pathway in hypothalamic inflammation. Mice treated with high-fat diet (HFD) for 3 days demonstrated a trend toward an increase in hypothalamic Rnf11 expression, as shown for other inflammatory markers under HFD. Furthermore, Gs-mediated signaling of MC3/4R was demonstrated to be strongly reduced to 20–40% by co-expression of RNF11 despite unchanged total receptor expression. Cell surface expression was not affected for MC3R but resulted in a significant reduction of MC4R to 61% by co-expression with RNF11. Mechanisms linking HFD, inflammation, and metabolism remain partially understood. In this study, a new axis between signaling of specific body weight regulating GPCRs and factors involved in hypothalamic inflammation is suggested

    IMPROVE 2022 International Meeting on Pathway-Related Obesity:Vision of Excellence

    Get PDF
    Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.</p

    IMPROVE 2022 International Meeting on Pathway-Related Obesity:Vision of Excellence

    Get PDF
    Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.</p

    Mutations in TITF-1 are associated with benign hereditary chorea

    Get PDF
    Benign hereditary chorea (BHC) (MIM 118700) is an autosomal dominant movement disorder. The early onset of symptoms (usually before the age of 5 years) and the observation that in some BHC families the symptoms tend to decrease in adulthood suggests that the disorder results from a developmental disturbance of the brain. In contrast to Huntington disease (MIM 143100), BHC is non-progressive and patients have normal or slightly below normal intelligence. There is considerable inter- and intrafamilial variability, including dysarthria, axial dystonia and gait disturbances. Previously, we identified a locus for BHC on chromosome 14 and subsequently identified additional independent families linked to the same locus. Recombination analysis of all chromosome 14-linked families resulted initially in a reduction of the critical interval for the BHC gene to 8.4 cM between markers D14S49 and D14S278. More detailed analysis of the critical region in a small BHC family revealed a de novo deletion of 1.2 Mb harboring the TITF-1 gene, a homeodomain-containing transcription factor essential for the organogenesis of the lung, thyroid and the basal ganglia. Here we report evidence that mutations in TITF-1 are associated with BHC
    corecore