1,509 research outputs found
Effect of many-body interactions on the solid-liquid phase-behavior of charge-stabilized colloidal suspensions
The solid-liquid phase-diagram of charge-stabilized colloidal suspensions is
calculated using a technique that combines a continuous Poisson-Boltzmann
description for the microscopic electrolyte ions with a molecular-dynamics
simulation for the macroionic colloidal spheres. While correlations between the
microions are neglected in this approach, many-body interactions between the
colloids are fully included. The solid-liquid transition is determined at a
high colloid volume fraction where many-body interactions are expected to be
strong. With a view to the Derjaguin-Landau-Verwey-Overbeek theory predicting
that colloids interact via Yukawa pair-potentials, we compare our results with
the phase diagram of a simple Yukawa liquid. Good agreement is found at high
salt conditions, while at low ionic strength considerable deviations are
observed. By calculating effective colloid-colloid pair-interactions it is
demonstrated that these differences are due to many-body interactions. We
suggest a density-dependent pair-potential in the form of a truncated Yukawa
potential, and show that it offers a considerably improved description of the
solid-liquid phase-behavior of concentrated colloidal suspensions
Harmonic lattice behavior of two-dimensional colloidal crystals
Using positional data from video-microscopy and applying the equipartition
theorem for harmonic Hamiltonians, we determine the wave-vector-dependent
normal mode spring constants of a two-dimensional colloidal model crystal and
compare the measured band-structure to predictions of the harmonic lattice
theory. We find good agreement for both the transversal and the longitudinal
mode. For , the measured spring constants are consistent with the
elastic moduli of the crystal.Comment: 4 pages, 3 figures, submitte
Measuring the equation of state of a hard-disc fluid
We use video microscopy to study a two-dimensional (2D) model fluid of
charged colloidal particles suspended in water and compute the pressure from
the measured particle configurations. Direct experimental control over the
particle density by means of optical tweezers allows the precise measurement of
pressure as a function of density. We compare our data with theoretical
predictions for the equation of state, the pair-correlation function and the
compressibility of a hard-disc fluid and find good agreement, both for the
fluid and the solid phase. In particular the location of the transition point
agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio
Injection of photoelectrons into dense argon gas
The injection of photoelectrons in a gaseous or liquid sample is a widespread
technique to produce a cold plasma in a weakly--ionized system in order to
study the transport properties of electrons in a dense gas or liquid. We report
here the experimental results of photoelectron injection into dense argon gas
at the temperatureT=142.6 K as a function of the externally applied electric
field and gas density. We show that the experimental data can be interpreted in
terms of the so called Young-Bradbury model only if multiple scattering effects
due to the dense environment are taken into account when computing the
scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted
to Plasma Sources Science and Technolog
Testing the relevance of effective interaction potentials between highly charged colloids in suspension
Combining cell and Jellium model mean-field approaches, Monte Carlo together
with integral equation techniques, and finally more demanding many-colloid
mean-field computations, we investigate the thermodynamic behavior, pressure
and compressibility of highly charged colloidal dispersions, and at a more
microscopic level, the force distribution acting on the colloids. The
Kirkwood-Buff identity provides a useful probe to challenge the
self-consistency of an approximate effective screened Coulomb (Yukawa)
potential between colloids. Two effective parameter models are put to the test:
cell against renormalized Jellium models
Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis
We extend our previous study of the polarization dependence of the nonlinear
optical response to the case of magnetic surfaces and buried magnetic
interfaces. We calculate for the longitudinal and polar configuration the
nonlinear magneto-optical Kerr rotation angle. In particular, we show which
tensor elements of the susceptibilities are involved in the enhancement of the
Kerr rotation in nonlinear optics for different configurations and we
demonstrate by a detailed analysis how the direction of the magnetization and
thus the easy axis at surfaces and buried interfaces can be determined from the
polarization dependence of the nonlinear magneto-optical response, since the
nonlinear Kerr rotation is sensitive to the electromagnetic field components
instead of merely the intensities. We also prove from the microscopic treatment
of spin-orbit coupling that there is an intrinsic phase difference of
90 between tensor elements which are even or odd under magnetization
reversal in contrast to linear magneto-optics. Finally, we compare our results
with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We
conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the
magnetic structure and in particular the magnetic easy axis in films and at
multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure
Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems
We have performed Brownian dynamics simulations on melting of two-dimensional
colloidal crystal in which particles interact with Yukawa potential. The pair
correlation function and bond-orientational correlation function was calculated
in the Yukawa system. An algebraic decay of the bond orientational correlation
function was observed. By ruling out the coexistence region, only a unstable
hexatic phase was found in the Yukawa systems. But our work shows that the
melting of the Yukawa systems is a two-stage melting not consist with the KTHNY
theory and the isotropic liquid and the hexatic phase coexistence region was
found. Also we have studied point defects in two-dimensional Yukawa systems.Comment: 9 pages, 8 figures. any comments are welcom
Magnetic properties of Quantum Corrals from first principles calculations
We present calculations for electronic and magnetic properties of surface
states confined by a circular quantum corral built of magnetic adatoms (Fe) on
a Cu(111) surface. We show the oscillations of charge and magnetization
densities within the corral and the possibility of the appearance of
spin--polarized states. In order to classify the peaks in the calculated
density of states with orbital quantum numbers we analyzed the problem in terms
of a simple quantum mechanical circular well model. This model is also used to
estimate the behaviour of the magnetization and energy with respect to the
radius of the circular corral. The calculations are performed fully
relativistically using the embedding technique within the
Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue
on 'Theory and Simulation of Nanostructures
- …