We use video microscopy to study a two-dimensional (2D) model fluid of
charged colloidal particles suspended in water and compute the pressure from
the measured particle configurations. Direct experimental control over the
particle density by means of optical tweezers allows the precise measurement of
pressure as a function of density. We compare our data with theoretical
predictions for the equation of state, the pair-correlation function and the
compressibility of a hard-disc fluid and find good agreement, both for the
fluid and the solid phase. In particular the location of the transition point
agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio