The solid-liquid phase-diagram of charge-stabilized colloidal suspensions is
calculated using a technique that combines a continuous Poisson-Boltzmann
description for the microscopic electrolyte ions with a molecular-dynamics
simulation for the macroionic colloidal spheres. While correlations between the
microions are neglected in this approach, many-body interactions between the
colloids are fully included. The solid-liquid transition is determined at a
high colloid volume fraction where many-body interactions are expected to be
strong. With a view to the Derjaguin-Landau-Verwey-Overbeek theory predicting
that colloids interact via Yukawa pair-potentials, we compare our results with
the phase diagram of a simple Yukawa liquid. Good agreement is found at high
salt conditions, while at low ionic strength considerable deviations are
observed. By calculating effective colloid-colloid pair-interactions it is
demonstrated that these differences are due to many-body interactions. We
suggest a density-dependent pair-potential in the form of a truncated Yukawa
potential, and show that it offers a considerably improved description of the
solid-liquid phase-behavior of concentrated colloidal suspensions