55 research outputs found
Improved prediction of mortality by combinations of inflammatory markers and standard clinical scores in patients with acute-on-chronic liver failure and acute decompensation
BACKGROUND AND AIM: Acute-on-chronic liver failure (ACLF) as a sinister prognosis and there is a need for accurate biomarkers and scoring systems to better characterize ACLF patients and predict prognosis. Systemic inflammation and renal failure are hallmarks in ACLF disease development and progression. We hypothesized that the combination of specific inflammatory markers in combination with clinical scores are better predictors of survival than the originally developed CLIF-C acute decompensation (AD) and CLIF-C ACLF scores. METHODS: We re-evaluated all previously measured inflammatory markers in 522 patients from the CANONIC study, 342 without and 180 with ACLF. We used the Harrell's C-index to determine the best marker alone or in combination with the original scores and calculated new scores for prediction of mortality in the original CANONIC cohort. RESULTS: The best markers to predict 90-day mortality in patients without ACLF were the plasma macrophage activation markers soluble (s)CD163 and mannose receptor (sMR). Urinary neutrophil gelatinase associated lipocalin (UNGAL) and sCD163 were predictors for 28-day mortality in patients with ACLF. The new developed CLIF-C AD+sMR score in patients without ACLF improved 90-days mortality prediction compared to the original CLIF-C AD score (C-index 0.82(0.78-0.86) vs. 0.74(0.70-0.78, P=0.004). Further, the new CLIF-C ACLF+sCD163+UNGAL improved the original CLIF-C ACLF score for 28-days mortality (0.85(0.79-0.91) vs. 0.75(0.70-0.80), P=0.039). CONCLUSIONS: The capability of these inflammatory markers to improve the original prognostic scores in cirrhosis patients without and with ACLF points to a key role of macrophage activation and inflammation in the development and progression of AD and ACLF
Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study
<p>Abstract</p> <p>Background</p> <p>Fatty liver is known to be linked with insulin resistance, alcohol intake, diabetes and obesity. Biopsy and even scan-assessed fatty liver are not always feasible in clinical practice. This report evaluates the predictive ability of two recently published markers of fatty liver: the Fatty Liver Index (FLI) and the NAFLD fatty liver score (NAFLD-FLS), for 9-year incident diabetes, in the French general-population cohort: Data from an Epidemiological Study on the Insulin Resistance syndrome (D.E.S.I.R).</p> <p>Methods</p> <p>At baseline, there were 1861 men and 1950 women, non-diabetic, aged 30 to 65 years. Over the follow-up, 203 incident diabetes cases (140 men, 63 women) were identified by diabetes-treatment or fasting plasma glucose â„ 7.0 mmol/l. The FLI includes: BMI, waist circumference, triglycerides and gamma glutamyl transferase, and the NAFLD-FLS: the metabolic syndrome, diabetes, insulin, alanine aminotransferase, and asparate aminotransferase. Logistic regression was used to determine the odds ratios for incident diabetes associated with categories of the fatty liver indices.</p> <p>Results</p> <p>In comparison to those with a FLI < 20, the age-adjusted odds ratio (95% confidence interval) for diabetes for a FLI â„ 70 was 9.33 (5.05-17.25) for men and 36.72 (17.12-78.76) for women; these were attenuated to 3.43 (1.61-7.28) and 11.05 (4.09 29.81), after adjusting on baseline glucose, insulin, hypertension, alcohol intake, physical activity, smoking and family antecedents of diabetes; odds ratios increased to 4.71 (1.68-13.16) and 22.77 (6.78-76.44) in those without an excessive alcohol intake. The NAFLD-FLS also predicted incident diabetes, but with odds ratios much lower in women, similar in men.</p> <p>Conclusions</p> <p>These fatty liver indexes are simple clinical tools for evaluating the extent of liver fat and they are predictive of incident diabetes. Physicians should screen for diabetes in patients with fatty liver.</p
Esophageal cancer risk by type of alcohol drinking and smoking: a case-control study in Spain
<p>Abstract</p> <p>Background</p> <p>The effect of tobacco smoking and alcohol drinking on esophageal cancer (EC) has never been explored in Spain where black tobacco and wine consumptions are quite prevalent. We estimated the independent effect of different alcoholic beverages and type of tobacco smoking on the risk of EC and its main histological cell type (squamous cell carcinoma) in a hospital-based case-control study in a Mediterranean area of Spain.</p> <p>Methods</p> <p>We only included incident cases with histologically confirmed EC (n = 202). Controls were frequency-matched to cases by age, sex and province (n = 455). Information on risk factors was elicited by trained interviewers using structured questionnaires. Multiple logistic regression was used to estimate adjusted odds ratios and 95% confidence intervals (CI).</p> <p>Results</p> <p>Alcohol drinking and tobacco smoking were strong and independent risk factors for esophageal cancer. Alcohol was a potent risk factor with a clear dose-response relationship, particularly for esophageal squamous-cell cancer. Compared to never-drinkers, the risk for heaviest drinkers (â„ 75 g/day of pure ethanol) was 7.65 (95%CI, 3.16â18.49); and compared with never-smokers, the risk for heaviest smokers (â„ 30 cigarettes/day) was 5.07 (95%CI, 2.06â12.47). A low consumption of only wine and/or beer (1â24 g/d) did not increase the risk whereas a strong positive trend was observed for all types of alcoholic beverages that included any combination of hard liquors with beer and/or wine (p-trend<0.00001). A significant increase in EC risk was only observed for black-tobacco smoking (2.5-fold increase), not for blond tobacco. The effects for alcohol drinking were much stronger when the analysis was limited to the esophageal squamous cell carcinoma (n = 160), whereas a lack of effect for adenocarcinoma was evidenced. Smoking cessation showed a beneficial effect within ten years whereas drinking cessation did not.</p> <p>Conclusion</p> <p>Our study shows that the risk of EC, and particularly the squamous cell type, is strongly associated with alcohol drinking. The consumption of any combination of hard liquors seems to be harmful whereas a low consumption of only wine may not. This may relates to the presence of certain antioxidant compounds found in wine but practically lacking in liquors. Tobacco smoking is also a clear risk factor, black more than blond.</p
Methylation Markers of Early-Stage Non-Small Cell Lung Cancer
Despite of intense research in early cancer detection, there is a lack of biomarkers for the reliable detection of malignant tumors, including non-small cell lung cancer (NSCLC). DNA methylation changes are common and relatively stable in various types of cancers, and may be used as diagnostic or prognostic biomarkers.We performed DNA methylation profiling of samples from 48 patients with stage I NSCLC and 18 matching cancer-free lung samples using microarrays that cover the promoter regions of more than 14,500 genes. We correlated DNA methylation changes with gene expression levels and performed survival analysis.We observed hypermethylation of 496 CpGs in 379 genes and hypomethylation of 373 CpGs in 335 genes in NSCLC. Compared to adenocarcinoma samples, squamous cell carcinoma samples had 263 CpGs in 223 hypermethylated genes and 513 CpGs in 436 hypomethylated genes. 378 of 869 (43.5%) CpG sites discriminating the NSCLC and control samples showed an inverse correlation between CpG site methylation and gene expression levels. As a result of a survival analysis, we found 10 CpGs in 10 genes, in which the methylation level differs in different survival groups.We have identified a set of genes with altered methylation in NSCLC and found that a minority of them showed an inverse correlation with gene expression levels. We also found a set of genes that associated with the survival of the patients. These newly-identified marker candidates for the molecular screening of NSCLC will need further analysis in order to determine their clinical utility
Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism
<p>Abstract</p> <p>Background</p> <p>An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer.</p> <p>Methods</p> <p>Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism.</p> <p>Results</p> <p>The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 ÎŒM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 ÎŒM). The average concentration then decreased at the 2-min (156 ÎŒM), 5-min (76 ÎŒM) and 10-min (40 ÎŒM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point.</p> <p>Conclusions</p> <p>This study offers a plausible mechanism to explain the increased risk for oral cancer associated with high acetaldehyde concentrations in certain beverages.</p
- âŠ