98 research outputs found

    Nonlocal Excitations and 1/8 Singularity in Cuprates

    Full text link
    Momentum-dependent excitation spectra of the two-dimensional Hubbard model on the square lattice have been investigated at zero temperature on the basis of the full self-consistent projection operator method in order to clarify nonlocal effects of electron correlations on the spectra. It is found that intersite antiferromagnetic correlations cause shadow bands and enhance the Mott-Hubbard splittings near the half-filling. Furthermore nonlocal excitations are shown to move the critical doping concentration δh∗\delta^{\ast}_{h}, at which the singular quasiparticle peak is located just on the Fermi level, from δh∗=0.153\delta^{\ast}_{h}=0.153 (the single-site value) to δh∗=0.123\delta^{\ast}_{h}=0.123. The latter suggests the occurance of an instability such as the stripe at δh∗=1/8\delta^{\ast}_{h}=1/8.Comment: 4 pages, 5 figures; to be published in the Journal of Korean Physical Society (ICM12

    Correlation effects in MgO and CaO: Cohesive energies and lattice constants

    Full text link
    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.Comment: LaTeX, 4 figure

    Andersen's force theorem and the local stress field

    No full text

    Halogen Bond Asymmetry in Solution

    No full text
    Halogen bonding is the noncovalent interaction of halogen atoms in which they act as electron acceptors. Whereas three-center hydrogen bond complexes, [D center dot center dot center dot H center dot center dot center dot D](+) where D is an electron donor, exist in solution as rapidly equilibrating asymmetric species, the analogous halogen bonds, [D center dot center dot center dot X center dot center dot center dot D](+), have been observed so far only to adopt static and symmetric geometries. Herein, we investigate whether halogen bond asymmetry, i.e., a [D-X center dot center dot center dot D](+) bond geometry, in which one of the D-X bonds is shorter and stronger, could be induced by modulation of electronic or steric factors. We have also attempted to convert a static three-center halogen bond complex into a mixture of rapidly exchanging asymmetric isomers, [D center dot center dot center dot X-D](+) (sic) [D-X center dot center dot center dot D](+), corresponding to the preferred form of the analogous hydrogen bonded complexes. Using N-15 NMR, IPE NMR, and DFT, we prove that a static, asymmetric geometry, [D-X center dot center dot center dot D](+), is obtained upon desymmetrization of the electron density of a complex. We demonstrate computationally that conversion into a dynamic mixture of asymmetric geometries, [D center dot center dot center dot X-D](+) (sic) [D-X center dot center dot center dot D](+), is achievable upon increasing the donor-donor distance. However, due to the high energetic gain upon formation of the three-center-four electron halogen bond, the assessed complex strongly prefers to form a dimer with two static and symmetric three-center halogen bonds over a dynamic and asymmetric halogen bonded form. Our observations indicate a vastly different preference in the secondary bonding of H+ and X+. Understanding the consequences of electronic and steric influences on the strength and geometry of the three-center halogen bond provides useful knowledge on chemical bonding and for the development of improved halonium transfer agents
    • …
    corecore