3,709 research outputs found

    Understanding BL Lac objects Structural & kinematic mode changes in the BL Lac object PKS 0735+178

    Full text link
    Context. We present evidence that parsec-scale jets in BL Lac objects may be significantly distinct in kinematics from their counterparts in quasars. We argued this previously for the BL lac sources 1803+784 and 0716+714, report here a similar pattern for another well-known BL Lac object, PKS 0735+178, whose nuclear jet is found to exhibit kinematics atypical of quasars. Aims. A detailed study of the jet components' motion reveals that the standard AGN paradigm of apparent superluminal motion does not always describe the kinematics in BL Lac objects. We study 0735+178 here to augment and improve the understanding of the peculiar motions in the jets of BL Lac objects as a class. Methods. We analyzed 15 GHz VLBA (Very Long Baseline Array) observations (2cm/MOJAVE survey) performed at 23 epochs between 1995.27 and 2008.91. Results. We found a drastic structural mode change in the VLBI jet of 0735+178, between 2000.4 and 2001.8 when its twice sharply bent trajectory turned into a linear shape.We further found that this jet had undergone a similar transition sometime between December 1981 and June 1983. A mode change, occurring in the reverse direction (between mid-1992 and mid-1995) has already been reported in the literature. These structural mode changes are found to be reflected in changed kinematical behavior of the nuclear jet, manifested as an apparent superluminal motion and stationarity of the radio knots. In addition, we found the individual mode changes to correlate in time with the maxima in the optical light curve. The last two transitions occurred before a (modest) radio flare. The behavior of this pc-scale jet appears to favor a scenario involving non-ballistic motions of the radio knots, produced by the precession of a continuous jet within the ambient medium.Comment: Accepted for publication in A&A (Abstract reduced for astro-ph

    Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Full text link
    We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb2Pd0.95S5, Ta2Pd0.97S6 and Ta2Pd0.97Te6 using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb2Pd0.95S5 and Ta2Pd0.97S6. Further, we find a pseudogap feature in Nb2Pd0.95S5 at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations

    Valence band electronic structure of Nb2Pd1.2Se5 and Nb2Pd0.95S5 superconductors

    Full text link
    We present a comparative study of our valence band photoemission results on Nb2Pd1.2Se5 and Nb2Pd0.95S5 superconductors which is supported by our DFT based electronic structure calculations. We observe that the VB spectra of both the compounds are qualitatively similar, except slight difference in the binding energy position of all features between the two compounds which could be the result of different electronegativity of Se and S atom. The calculated density of states reveal that the VB features are mainly composed of Pd Se S hybridized states. The nature of DOS originating from the distinctly coordinated Pd atoms is different. Further, the involvement of the various Pd 4d and Nb 4d states in crossing of Fermi level signifies the multiband character of these compounds. In addition, we find a temperature dependent pseudogap in Nb2Pd0.95S5 which is absent in Nb2Pd1.2Se5

    Electrical properties of a-antimony selenide

    Full text link
    This paper reports conduction mechanism in a-\sbse over a wide range of temperature (238K to 338K) and frequency (5Hz to 100kHz). The d.c. conductivity measured as a function of temperature shows semiconducting behaviour with activation energy Δ\DeltaE= 0.42 eV. Thermally induced changes in the electrical and dielectric properties of a-\sbse have been examined. The a.c. conductivity in the material has been explained using modified CBH model. The band conduction and single polaron hopping is dominant above room temperature. However, in the lower temperature range the bipolaron hopping dominates.Comment: 9 pages (RevTeX, LaTeX2e), 9 psfigures, also at http://pu.chd.nic.in/ftp/pub/san16 e-mail: gautam%[email protected]

    Evolution of Coordination in Social Networks: A Numerical Study

    Get PDF
    Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.Comment: preprint submitted to IJMP

    Origin of Complex Quantum Amplitudes and Feynman's Rules

    Full text link
    Complex numbers are an intrinsic part of the mathematical formalism of quantum theory, and are perhaps its most mysterious feature. In this paper, we show that the complex nature of the quantum formalism can be derived directly from the assumption that a pair of real numbers is associated with each sequence of measurement outcomes, with the probability of this sequence being a real-valued function of this number pair. By making use of elementary symmetry conditions, and without assuming that these real number pairs have any other algebraic structure, we show that these pairs must be manipulated according to the rules of complex arithmetic. We demonstrate that these complex numbers combine according to Feynman's sum and product rules, with the modulus-squared yielding the probability of a sequence of outcomes.Comment: v2: Clarifications, and minor corrections and modifications. Results unchanged. v3: Minor changes to introduction and conclusio

    DMTPC: A dark matter detector with directional sensitivity

    Get PDF
    By correlating nuclear recoil directions with the Earth's direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we describe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of <15 degrees. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.Comment: 4 pages, 2 figures, proceedings for the CIPANP 2009 conference, May 26-31, 200

    Entanglement between more than two hundred macroscopic atomic ensembles in a solid

    Full text link
    We create a multi-partite entangled state by storing a single photon in a crystal that contains many large atomic ensembles with distinct resonance frequencies. The photon is re-emitted at a well-defined time due to an interference effect analogous to multi-slit diffraction. We derive a lower bound for the number of entangled ensembles based on the contrast of the interference and the single-photon character of the input, and we experimentally demonstrate entanglement between over two hundred ensembles, each containing a billion atoms. In addition, we illustrate the fact that each individual ensemble contains further entanglement. Our results are the first demonstration of entanglement between many macroscopic systems in a solid and open the door to creating even more complex entangled states.Comment: 10 pages, 8 figures; see also parallel submission by Frowis et a

    Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase

    Get PDF
    [[abstract]]Recently, due to rapid economic development in emerging nations, the world's raw material prices have been rising. In today's unrestricted information environment, suppliers typically announce impending supply price increases at specific times. This allows retailers to replenish their stock at the present price, before the price increase takes effect. The supplier, however, will generally offer only limited quantities prior to the price increase, so as to avoid excessive orders. The retail price will usually reflect any supply price increases, as market demand is dependent on retail price. This paper considers deteriorating items and investigates (1) the possible effects of a supply price increase on retail pricing, and (2) ordering policies under the conditions that special order quantities are limited and demand is dependent on retail price. The purpose of this paper is to determine the optimal special order quantity and retail price to maximize profit. Our theoretical analysis examines the necessary and sufficient conditions for an optimal solution, and an algorithm is established to obtain the optimal solution. Furthermore, several numerical examples are given to illustrate the developed model and the solution procedure. Finally, a sensitivity analysis is conducted on the optimal solutions with respect to major parameters.[[incitationindex]]SCI[[booktype]]紙
    corecore