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Abstract. Recently, due to rapid economic development in emerging nations,
the world’s raw material prices have been rising. In today’s unrestricted in-

formation environment, suppliers typically announce impending supply price

increases at specific times. This allows retailers to replenish their stock at the
present price, before the price increase takes effect. The supplier, however, will

generally offer only limited quantities prior to the price increase, so as to avoid
excessive orders. The retail price will usually reflect any supply price increases,

as market demand is dependent on retail price. This paper considers deterio-

rating items and investigates (1) the possible effects of a supply price increase
on retail pricing, and (2) ordering policies under the conditions that special

order quantities are limited and demand is dependent on retail price. The pur-

pose of this paper is to determine the optimal special order quantity and retail
price to maximize profit. Our theoretical analysis examines the necessary and

sufficient conditions for an optimal solution, and an algorithm is established

to obtain the optimal solution. Furthermore, several numerical examples are
given to illustrate the developed model and the solution procedure. Finally, a

sensitivity analysis is conducted on the optimal solutions with respect to major

parameters.
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1. Introduction. Recently, due to rapid economic development in emerging na-
tions, the world’s raw material prices have been rising, and the cost of many goods
have been facing upwards pressure; a serious issue for enterprises. Moreover, in
today’s environment of unrestricted information, retailers can easily obtain supply
price information through various methods. If a supplier attempts to hide informa-
tion surrounding an impending supply price increase, he/she may lose customers
in the long term. Hence, suppliers typically actively announce impending price
increases to retailers. As retailers need to make inventory policy decisions, it is
essential for them to consider price increases. In past studies, many authors have
considered the issue of announcing price increases, and have proposed various ana-
lytical models to gain more insight into the inferences that can be made on inventory
policy. Naddor [16], one of the first researchers in this area, proposed an infinite
horizon economic order quantity (EOQ) model which can be applied when suppliers
announce a price increase. Lev and Soyster [12] developed a finite horizon inventory
model and determined optimal ordering policies based on knowledge of an ensuing
price increase. Goyal [6] analyzed Lev and Soyster’s [12] model and proposed an
alternative method for determining the optimal policy. Taylor and Bradley [20]
extended Naddor’s [16] model, by developing optimal ordering strategies for situ-
ations where the time of the price increase does not coincide with the end of an
EOQ cycle. Lev and Weiss [13] presented a structure of optimal policies and pro-
cedures for computing the optimal policy. Ghosh [5] presented an infinite-horizon
deterministic inventory model that can account for inventory shortages under an
announced price increase. Additionally, there have been several other interesting
and relevant papers, such as Shah [18], Tersine and Grasso [21], Markowski [14],
Jordan [11], Goyal and Bhatt [7], Yanasse [23] and Huang and Kulkarni [10].

Most of the above discussed research revealed that retailers will adopt a special
order policy where order quantity is unlimited, when faced with an announced
price increase. In practice, to avoid retailers ordering large quantities, suppliers can
offer limited quantities prior to the price increase. Moreover, the above discussed
literature does not account for price increases being passed on to consumers. Some
retailers will pass on the cost of price increases to their customers, therefore it is
reasonable that retailers will take limited order quantities and price responses into
account when adopting a special order policy.

The inventory models discussed above account for the impact of price changes,
and focus on determining the optimal special order quantity for the retailer. A
weakness in most inventory models is that they neglect the deterioration of goods,
a common phenomenon. It is well known that certain products, such as medicine,
volatile liquids, fruits, and vegetables, will vaporize, spoil, or damage over time.
For such products, losses due to deterioration cannot be ignored when determining
the optimal ordering policy. Inventory problems relating to deteriorating items
have been studied widely, for example Ghare and Schrader [4] were the first to
establish an EOQ model for an exponentially-decaying item, for which there is
constant demand. Later, Covert and Philip [1] extended this model and obtained an
EOQ model for a variable deterioration rate, by assuming a two-parameter Weibull
distribution. Philip [17] then developed an inventory model with a three-parameter
Weibull distribution deterioration rate. Shah [19] extended Philip’s model and
considered the circumstances in which a shortage is allowed. Goyal and Giri [8]
provided a detailed review of the deteriorating inventory literature since the early
1990s. Recently, Yu et al. [26] proposed a Three-Echelon deteriorating inventory
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model with two producers, a single distributor and two retailers. There is a vast
amount of literature on deteriorating items, an outline of which can be found by
reviewing Yao and Wang [25], Moon et al. [15], Deng et al. [2], He et al. [9] and
others.

Consequently, the contribution of this paper, relative to previous studies, is that
we explore inventory decisions in the context of the following three issues in regards
to the traditional EOQ model: (1) when the retailer is informed by the supplier of a
future price increase and decides whether to make a special order before the increase,
and what their new retail price should be; (2) the quantities of the special order
items are limited; and (3) the goods deteriorate at a constant rate. Furthermore, the
special order date may or may not coincide with the replenishment date. Hence, the
two situations developed in this study are: (a) when the special order date coincides
with the retailer’s replenishment date; and (b) when the special order date occurs
during the retailer’s sales period. The purpose of this study is to determine the
retailer’s optimal order policies and retail prices in response to a price increase,
through the maximization of the total profit increase between special and regular
orders, during the depletion time of the special order quantity. An algorithm is
established to obtain the optimal solution. Several numerical examples are given
to illustrate the theories in practical use, and a sensitivity analysis of the optimal
solution is also conducted by examining the main parameters.

2. Notation and assumptions. The following notation and assumptions are used
in this study:
Notation

ν unit purchasing price.
k amount of the unit purchasing price increase.
p retail price when the unit purchasing price is ν.
pr retail price when the unit purchasing price is ν + k.
ps retail price for the special order quantity, a decision variable.

D(p) market demand rate, which is a decreasing function of the retail price.
A ordering cost per order.
h holding cost rate, as a fraction of the cost of the item carried in inventory per

unit time, 0 < h < 1.
θ deterioration rate, where 0 ≤ θ < 1 and is a constant.
Q economic order quantity before the purchasing price increase.
T the length of replenishment cycle time before the purchasing price increase.
Qr economic order quantity after the purchasing price increase.
Tr the length of replenishment cycle time after the purchasing price increase.
Qs special order quantity before the purchasing price increase, a decision variable.
Ts depletion time for the special order quantity Qs, a decision variable.
W limited special order quantity at the present purchasing price.
TW depletion time of the limited special order quantity W .
q remnant of inventory level when special order is placed.
tq the length of time until special order is placed during the regular replenishment

period.
Tq depletion time for the inventory quantity Qs + q.
p∗ optimal retail price when the unit purchasing price is ν.
p∗r optimal retail price when the unit purchasing price is ν + k
p∗s optimal retail price for the special order quantity.
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Q∗ optimal economic order quantity before the purchasing price increase.
T ∗ optimal length of replenishment cycle time before the purchasing price in-

crease.
Q∗
r optimal economic order quantity after the purchasing price increase.

T ∗
r optimal length of replenishment cycle time after the purchasing price increase.

Q∗
s optimal special order quantity before the purchasing price increase.

T ∗
s optimal depletion time for the special order quantity Q∗

s.
I(t) inventory level at time t before the purchasing price increase, 0 ≤ t ≤ T .
Is(t) inventory level at time t when the special order policy is adopted, 0 ≤ t ≤ Ts.
Iq(t) inventory level at time t during the time interval [0, Tq].
TP (p, T ) total profit per unit time during the replenishment period T .
TPr(pr, Tr) total profit per unit time during the replenishment period Tr.
gi(ps, Ts) total profit increase between the special order and regular order during

the special cycle time for case i, i = 1, 2.
g∗i maximum total profit increase between the special order and regular order

during the special cycle time for case i, i.e., g∗i (p∗s, T
∗
s ), i = 1, 2.

Assumptions

1 The demand rate D(p) is a non-negative continuous function of the retail price

p, and satisfies D
′
(p) < 0 and D

′′
(p) ≤ 0.

2 The supplier announces that the unit price of an item will increased by a given
amount, k, on a certain future date.

3 The retailer has only one opportunity to replenish with the present price before
the purchasing price increases, and the special order quantity that the retailer
can order at the present price is limited to W , i.e., Qs ≤W .

4 In general, the special order quantity at the present price, Qs, is always greater
than or equal to the optimal economic order quantity before the purchasing
price increase, Q∗, i.e., Qs ≥ Q∗.

5 There is no replacement or repair of deteriorated units during the period of
the consideration.

6 The replenishment is instantaneous and the lead time is zero.
7 Shortages are not allowed.

3. Model formulation. In the beginning, we explain the inventory level on hand
change in inventory system: the depletion of the inventory occurs due to the com-
bined effects of demand and physical deterioration. Hence, the change in inventory
level before the purchasing price increase can be illustrated by the following differ-
ential equation:

dI(t)

dt
= −θI(t)−D(p), 0 < t < T (1)

Given the boundary condition I(t) = 0, the solution of (1) can be represented by

I(t) =
D(p)

θ

[
eθ(T−t) − 1

]
, 0 ≤ t ≤ T (2)

Thus, the order quantity is given by

Q = I(0) =
D(p)

θ

(
eθT − 1

)
(3)

Prior to the purchasing price increase, the retailer follows the regular economic
order policy with unit purchasing cost, ν, and sell them with unit retail price, p.
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In this situation, the total profit during the replenishment period T is the total

revenue (p
∫ T
0
D(p)dt) minus the total relevant cost which is including the ordering

cost (A), purchasing cost (νQ) and holding cost (hν
∫ T
0
I(t)dt). That is,

p

∫ T

0

D(p)dt−
[
A+ νQ+ hν

∫ T

0

I(t)dt

]
= D(p)

[
(p− ν)T − (θ + h)ν

θ2

(
eθT − θT − 1

)]
−A. (4)

Therefore, the total profit per unit time is

TP (p, T ) =
D(p)

T

{
(p− ν)T − (θ + h)ν

θ2

(
eθT − θT − 1

)
− A

D(p)

}
. (5)

The objective of this problem is to determine the optimal pricing and ordering
policies that correspond to maximizing the total profit per unit time. The optimal
solutions can be obtained by using the following search procedure: We first prove
that for any given retail price p, the optimal value of T not only exists but also is
unique. And then for any given value of T , there exists a unique sell pricing p to
maximize the objective function. The processes of proofs are similar to Dye [3], Wu
et al. [22], Yang et al. [24], and hence are omitted here. Once the optimal retail
price, p∗, and the length of replenishment cycle time, T ∗, are obtained, the optimal
order quantity, Q∗, is

Q∗ =
D(p∗)

θ

(
eθT

∗
− 1

)
. (6)

Next, when the unit purchasing cost increases from ν to (ν + k), the retailer will
reflect the supply price increases on the retail price. Hence, the retail price increases
from p to pr. The total profit per unit time becomes

TPr(pr, Tr) =
D(pr)

Tr

[
(pr − ν − k)Tr −

(θ + h)(ν + k)

θ2

(
eθTr − θTr − 1

)]
− A

Tr
.

(7)

Similarly, it can obtain the optimal solution (p∗r , T
∗
r ) that maximizes TPr(pr, Tr),

and the corresponding optimal order quantity, is

Q∗
r =

D(p∗r)

θ

(
eθT

∗
r − 1

)
. (8)

Subsequently, when a supplier announces a price increase that is effective starting
on a particular future date, the retailer may place a special order to take advantage
of the current lower purchasing price, ν, before the price increases. In order to
response the marketing situation and increase the profit, the retailer will reflect
supply price increases on retailer price. According to the demand-supply ruler,
the more the price is, the less the demand will be. Alternatively, the retailer may
ignore this notice and adopt a regular order policy. Anticipating the high likelihood
of suppliers and retailers hoarding goods for later sale at a higher retail price,
suppliers are only willing to offer limited quantities, W , prior to the price increase.

Our purpose is to determine the optimal special order quantity and the retail price
by maximizing the total profit increase between special and regular orders during
the depletion time of the special order quantity. As stated earlier, two specific



442 C.-T. YANG, L.-Y. OUYANG, H.-F. YEN AND K.-L. LEE

situations are discussed in this study. Next, we will formulate the corresponding
total relevant inventory cost saving function for these two cases.
Case 1: The special order date coincides with the retailer’s replenishment
date

In this case, if the retailer decides to adopt a special order policy and orders Qs
units, then the inventory level at time t will be

Is(t) =
D(ps)

θ

[
eθ(Ts−t) − 1

]
, 0 ≤ t ≤ Ts. (9)

The special order quantity with the original unit purchasing price, ν, is

Qs = Is(0) =
D(ps)

θ

(
eθTs − 1

)
. (10)

From Assumptions 3 and 4, we know that the special order quantity Qs is less than
or equal to the limits quantity W and is always larger than or equal to the optimal
regular order quantity Q∗ (i.e., Q∗ ≤ Qs ≤ W ). Substituting Qs in (10) into the
inequality Q∗ ≤ Qs ≤W , we have

TR ≡
1

θ
ln

[
θQ∗ +D(ps)

D(ps)

]
≤ Ts ≤

1

θ
ln

[
θW +D(ps)

D(ps)

]
≡ Tw. (11)

The total profit of the special order during the time interval [0, Ts] (denoted by
TPS1(ps, Ts)) is equal to total revenue minus the total relevant cost which consists
of the ordering cost, purchasing cost and holding cost, and can be expressed by

TPS1(ps, Ts)

=psD(ps)Ts−

[
A+

νD(ps)

θ

(
eθTs − 1

)
+
hνD(ps)

θ2

(
eθTs − θTs − 1

)]

=D(ps)

[
(ps − ν)Ts −

(θ + h)ν

θ2

(
eθTs − θTs − 1

)]
−A. (12)

If the retailer adopts its regular order policy, then the total cost of a regular
order during the time interval [0, Ts] will be divided into two periods (see Figure 1).
In the first period, the retailer orders Q∗ units at the unit purchasing price ν and
retail price p. The corresponding total profit is similar to (4), and is represented by

D(p∗)

[
(p∗ − ν)T ∗ − (θ + h)ν

θ2

(
eθT

∗
− θT ∗ − 1

)]
−A. (13)

As to the rest period, the retailer follows regular EOQ policy with the unit pur-
chasing price ν + k and retail price pr. Thus, the total profit during the rest period
is

Ts − T ∗

T ∗
r

{
D(P ∗

r )

[
(p∗r − ν − k)T ∗

r −
(θ + h)(ν + k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
−A

}
.

(14)
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Figure 1. Special vs. regular order policies when the special order date coincides with the

retailer’s replenishment date.

Consequently, the total profit of a regular order during the time interval [0, Ts]
(denoted by TPN1(ps, Ts)) is

TPN1(ps, Ts)

=D(p∗)

[
(p∗ − ν)T ∗ − (θ + h)ν

θ2

(
eθT

∗
− θT ∗ − 1

)]
−A+

Ts − T ∗

T ∗
r

×

{
D(p∗r)

[
(p∗r − ν − k)T ∗

r −
(θ + h)(ν + k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
−A

}
. (15)

Comparing (12) with (15), the total profit increase when the special order date
coincides with the retailer’s replenishment date (i.e., Case 1) can be given by

g1(ps, Ts) =TPS1(ps, Ts)− TPN1(ps, Ts)

=D(ps)

[
(ps − ν)Ts −

(θ + h)ν

θ2

(
eθTs − θTs − 1

)]
−D(p∗)

[
(p∗ − ν)T ∗

− (θ + h)ν

θ2

(
eθT

∗
− θT ∗ − 1

)]
− Ts − T ∗

T ∗
r

{
D(p∗r)

[
(p∗r − ν − k)T ∗

r

− (θ + h)(ν + k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
−A

}
. (16)
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Figure 2. Special vs. regular order policies when the special order date occurs during the
retailer’s sales period.

Case 2: The special order date occurs during the retailer’s sales period
Sometimes, the date of the price increase occurs during the retailer’s sales period.

In this situation, if the retailer decides to place a special order of quantity Qs at
the present purchasing price ν, retail price, ps, then the inventory level will increase
instantaneously from q to Qs+q when the special order quantities are delivered (see
Figure 2). On the other hand, if the retailer ignores notice of the purchasing price
increase, then the retailer will not place any orders until the next replenishment.
We will formulate the total profit functions for the special and regular order policies
and then compare the two to calculate the total profit increase in Case 2.

When special orders are placed, the total profit increase during the time interval
[0, Tq] is equal to the total revenue, psD(ps)Tq minus the total relevant cost which
consists of the ordering cost A, the purchasing cost ν(Qs + q), and the holding cost
which presented as follows:

As the special order quantities arrive, the maximum inventory is given by:

Qs + q =
D(ps)

θ
(eθTs − 1) +

D(p∗)

θ
[eθ(T

∗−tq) − 1]. (17)

The inventory level at time t during the time interval [0, Tq] can be obtained by

Iq(t) =
D(ps)

θ

[
eθ(Tq−t) − 1

]
, 0 ≤ t ≤ Tq. (18)

Because Iq(0) = Qs + q from (17) and (18), we have

D(ps)

θ
(eθTq − 1) =

D(ps)

θ
(eθTs − 1) +

D(p∗)

θ
[eθ(T

∗−tq) − 1]. (19)
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Thus,

Tq =
1

θ
ln

[
eθTs +

D(p∗)[eθ(T∗−tq) − 1]

D(ps)

]
. (20)

For simplify, we let z ≡ D(p∗)[eθ(T
∗−tq) − 1] > 0. Therefore, the total holding cost

of the special order policy is

hν

∫ Tq

0

Iq(t)dt =
hνD(ps)

θ2

(
eθTq − θTq − 1

)
=
hνD(ps)

θ2

{
eθTs +

z

D(ps)
− ln

[
eθTs +

z

D(ps)

]
− 1

}
. (21)

Consequent to this, the total profit of the special order during the time interval
[0, Tq] (denoted by TPS2(ps, Ts)) can be formulated as follows:

TPS2(ps, Ts) =D(ps)

{
θps + hν

θ2
ln

[
eθTs +

z

D(ps)

]
− (θ + h)ν

θ2
(eθTs − 1)

}

− (θ + h)νD(p∗)

θ2
[eθ(T

∗−tq) − 1]−A. (22)

On the other hand, if the retailer ignores notification of the price increase and
follows its regular order policy, the total profit during the time interval [0, Tq] will
also be divided into two periods. In the first period, the retailer only has the profit
during the depletion time of remnant q, T ∗−tq, and we use the average cost analysis
approach. It gives as follows

T ∗ − tq
T ∗

{
D(p∗)

[
(p∗ − ν)T ∗ − (θ + h)ν

θ2

(
eθT

∗
− θT ∗ − 1

)]
−A

}
.

Next, the retailer follows the regular order policy with the unit purchase cost ν + k
and retail price pr during the rest period. To obtain the total profit in this period,
we also use the average analysis approach, which is given by

Tq − (T ∗ − tq)
T ∗
r

{
D(p∗r)

[
(p∗r − ν − k)T ∗

r −
(θ + h)(ν + k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
−A

}

=

{
1

θT ∗
r

ln

[
eθTs +

z

D(ps)

]
− T ∗ − tq

T ∗
r

}{
D(p∗r)

[
(p∗r − ν − k)T ∗

r

− (θ + h)(ν + k)(eθT
∗
r − θT ∗

r − 1)

θ2

]
−A

}
. (23)

As a result, if the retailer ignores the notification and follows its regular order
policy during the time interval [0, Tq], the total profit (denoted by TPN2(ps, Ts))
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is represented by:

TPN2(ps, Ts) =
T ∗ − tq
T ∗

{
D(p∗)

[
(p∗ − ν)T ∗ − (θ + h)ν

θ2

(
eθT

∗
− θT ∗ − 1

)]
−A

}

+

{
1

θT ∗
r

ln

[
eθTs +

z

D(ps)

]
− T ∗ − tq

T ∗
r

}{
D(p∗r)

[
(p∗r − ν − k)T ∗

r

− (θ + h)(ν + k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
−A

}
. (24)

Therefore, the total profit increase when the special order date occurs during the
retailer’s sales period (i.e., Case 2) can be formulated as follows:

g2(ps, Ts) =TPS2(ps, Ts)− TPN2(ps, Ts)

=D(ps)

{
θps + hν

θ2
ln

[
eθTs +

z

D(ps)

]
− (θ + h)ν

θ2
(eθTs − 1)

}

− (θ + h)νD(p∗)

θ2
[eθ(T

∗−tq) − 1]−A− T ∗ − tq
T ∗

{
D(p∗

[
(p∗ − ν)T ∗

− (θ + h)ν

θ2

(
eθT

∗
− θT ∗ − 1

)
−A

]}

−

{
1

θT ∗
r

ln

[
eθTs +

z

D(ps)

]
− T ∗ − tq

T ∗
r

}

×

{
D(p∗r)

[
(p∗r − ν − k)T ∗

r −
(θ + h)(ν + k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
−A

}
.

(25)

Remark 1. When q = 0 (i.e., tq = T ∗), the two total profit increase functions
g1(ps, Ts) and g2(ps, Ts) have the following relationship from (16) and (25):

g2(ps, Ts)− g1(ps, Ts)

=D(p∗)

[
(p∗ − ν)T ∗ − (θ + h)ν

θ2

(
eθT

∗
− θT ∗ − 1

)]
−A

− T ∗

T ∗
r

{
D(p∗r)

[
(p∗r − ν − k)T ∗

r −
(θ + h)(ν + k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
−A

}
.

It is noted that the right-hand side of the above equation is a constant as the values
of parameters are given. Therefore, the total profit increase function for Case 1 is
a little different from Case 2 with a constant item.
Remark 2. Note that it is worth placing a special order when the total profit
increase is positive for the above two cases. Otherwise, the special order policy will
be ignored by the retailer.

4. Theoretical results. In this section, the optimal solution of (ps, Ts) that max-
imizes the total profit increase function is determined. From Remark 1, we can see
that the total profit increase function for Case 1 is a little different from Case 2
with a constant item when q = 0 (tq = T ∗ ). Here we only discuss how to find
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the optimal solution of (ps, Ts) that maximizes the total profit increase function for
Case 2. The detail solution procedure is shown as follows.

The necessary conditions for the increase function in (25) to be maximized are
∂g2(ps, Ts)/∂Ts = 0 and ∂g2(ps, Ts)/∂ps = 0, simultaneously. That is,

D(ps)

{
(θps + hν)eθTs

θ[eθTs + z
D(ps)

]
− (θ + h)νeθTs

θ

}
− eθTsy

eθTs + z
D(ps)

= 0, (26)

and

D
′
(ps)

θ2

{
(θps + hν)ln

[
eθTs +

z

D(ps)

]
− (θ + h)ν(eθTs − 1)

− [(θps + hν)D(ps)− θy]z/D(ps)

[eθTs + z/D(ps)]D(ps)

}
+
D(ps)

θ
ln

[
eθTs +

z

D(ps)

]
= 0,

(27)

where y ≡ 1
T∗r

{
D(p∗r)

[
(p∗r − ν − k)T ∗

r −
(θ+h)(ν+k)

θ2

(
eθT

∗
r − θT ∗

r − 1

)]
− A

}
> 0,

and D
′
(ps) is the derivative of D(ps) with respect to ps.

It is not easy to find the closed-form solution of (ps, Ts) from (26) and (27).
Besides, due to the high-power expression of the exponential function, the concavity
property of the total profit increase function in (25) cannot be proved by using the
Hessian matrix. Instead, we solve the problem by the following search procedure.

For any given ps, the necessary condition for the total profit increase in (25) to
be maximized is dg2(ps, Ts)/dTs = 0, leads to

(θps + hν)D(ps)− θy
eθTs + z/D(ps)

= (θ + h)νD(ps), (28)

and the second-order sufficient condition must satisfy d2g2(Ts)/dT
2
s < 0. Because

d2g2(Ts)

dT 2
s

= eθTs

{
[(θps + hν)D(ps)− θy]z/D(ps)

[eθTs + z/D(ps)]2
− (θ + h)νD(ps)

}

= −e2θTs

{
(θps + hν)D(ps)− θy

[eθTs + z/D(ps)]2

}
(by(28)).

Moreover, due to the RHS in (28) is positive which implies (θPs+hν)D(ps)−θy > 0,
and hence d2g2(Ts)/dT

2
s < 0. Thus the optimal value of Ts (say Ts2) can be obtained

by solving (28), and is

Ts2 =
1

θ
ln

{
(θps + hν)D(ps)− θy − (θ + h)νz

(θ + h)νD(ps)

}
. (29)

Furthermore, to ensure Q∗ ≤ Qs ≤ W (i.e., TR ≤ Ts ≤ TW ), we substitute (29)
into this inequality, and obtain that

if ∆1(ps) ≤ 0 ≤ ∆2(ps), then TR ≤ Ts2 ≤ TW , (30)

where

∆1(ps) ≡ (θ + h)ν(θQ∗ + z)− θ[(ps − ν)D(ps)− y], (31)
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and

∆2(ps) ≡ (θ + h)ν(θW + z)− θ[(ps − ν)D(ps)− y], (32)

TR and TW are defined as in (11).
Conversely, as ∆2(ps) < 0, we have

y < (ps − ν)D(ps)− (θ + h)ν(θW + z)/θ,

which implies

dg2(ps, Ts)

dTs
= eθTs

{
(θps + hν)D(ps)− θy
θ[eθTs + z/D(ps)]

− (θ + h)νD(ps)

θ

}

> eθTs

{
(θ + h)ν[θW −D(ps)(e

θTs − 1)]

θ[eθTs + z/D(ps)]

}

= eθTs

[
(θ + h)ν(W −Qs)
eθTs + z/D(ps)

]
≥ 0 (because Qs ≤W ).

Hence, for any given ps, g2(ps, Ts) is a strictly increasing function of Ts ∈ [TR, TW ],
and has a maximum value at the upper boundary point Ts = TW .

On the other hand, if ∆1(ps) > 0, y > (ps − ν)D(ps) − (θ + h)ν(θQ∗ + z)/θ,
which implies

dg2(ps, Ts)

dTs
= eθTs

{
(θps + hν)D(ps)− θy
θ[eθTs + z/D(ps)]

− (θ + h)νD(ps)

θ

}

< eθTs

{
(θ + h)ν[θQ∗ −D(ps)(e

θTs − 1)]

θ[eθTs + z/D(ps)]

}

= eθTs

[
(θ + h)ν(Q∗ −Qs)
eθTs + z/D(ps)

]
≤ 0 (because Qs ≥ Q∗).

Thus, for any given ps, g2(ps, Ts) is a strictly decreasing function of Ts ∈ [TR, TW ],
and hence has a maximum value at the lower boundary point Ts = TR.

From the above arguments, for any given ps, we can obtain the optimal value of
Ts (denoted by Y ∗

s ) as follows:

T ∗
s =


TR, if ∆1(ps) > 0,

Ts2 , if ∆1(ps) ≤ 0 ≤ ∆2(ps),

TW , if ∆2(ps) < 0.

Remark 3. Note that when the optimal length of replenishment cycle time T ∗
s =

TR or Ts2 , from (11) and (29), it can be found that the value of T ∗
s is indepen-

dent of the limited special order quantity by supplier supplied W , and hence the
corresponding optimal special order quantity Q∗

s is also independent of W .
Next, the problem remaining is to find the optimal value of ps which maximizes

g2(ps, T
∗
s ). Similarly, the necessary condition for the total profit increase in (25) to
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be maximized is dg2(ps, T
∗
s )/dps = 0, gives

D
′
(ps)

θ2

{
(θps + hν)

{
ln

[
eθT

∗
s +

z

D(ps)

]
− z/D(ps)

eθT
∗
s + z/D(ps)

}
− (θ + h)ν(eθT

∗
s − 1)

+
θyz/D(ps)

[eθT
∗
s + z/D(ps)]D(ps)

}
+
D(ps)

θ
ln

[
eθT

∗
s +

z

D(ps)

]
= 0, (33)

and the sufficient condition must satisfy d2g2(ps, T
∗
s )/dp2s < 0. Because

d2g2(ps, T
∗
s )

dp2s
=
D
′′
(ps)

θ2

{
(θps + hν)

{
ln

[
eθT

∗
s +

z

D(ps)

]
− z/D(ps)

eθT
∗
s + z/D(ps)

}

− (θ + h)ν(eθT
∗
s − 1) +

θyz/D(ps)

[eθT
∗
s + z/D(ps)]D(ps)

}

− (θps + hν)[D
′
(ps)]

2

θ2D(ps)
×

[
z/D(ps)

eθT
∗
s + z/D(ps)

]2

− y[D
′
(ps)]

2

θ[D(ps)]2

{
2[z/D(ps)]e

θT∗s + [z/D(ps)]
2

[eθT
∗
s + z/D(ps)]2

}

+
2D
′
(ps)

θ

{
ln

[
eθT

∗
s +

z

D(ps)

]
−

[
z/D(ps)

eθT
∗
s + z/D(ps)

]}
, (34)

where D
′
(ps) and D

′′
(ps) are the first and second-order derivatives of D(ps) with

respect to ps, respectively. By the assumptions D
′
(ps) < 0 and D

′′
(ps) ≤ 0, and

from (33), it is known that the first brace term of RHS in (34) is positive, i.e.,

(θps + hν)

{
ln[eθT

∗
s + z/D(ps)]−

z/D(ps)

eθT
∗
s + z/D(ps)

}
− (θ + h)ν(eθT

∗
s − 1)

+
θyz/D(ps)

[eθT
∗
s + z/D(ps)]D(ps)

> 0,

and the last brace term ln[eθT
∗
s + z/D(ps)] − [z/D(ps)]/[e

θT∗s + z/D(ps)] is also
positive (the proof sees in the Appendix). Therefore, it can be obtained that
d2g2(p∗s, T

∗
s )/dp2s < 0. Consequently, for a given T ∗

s , g2(ps, T
∗
s ) is a concave func-

tion of ps, and hence there exists a unique value of ps (say ps2) which maximizes
g2(ps, T

∗
s ). It is obvious ps2 can be found by solving dg2(ps, T

∗
s )/dps = 0, that is,

ps2 can be determined by solving (33).
Summarize the above results, for q > 0 (i.e., Case 2), we can develop an algorithm

to obtain the optimal solution (T ∗
s , p

∗
s). As to the case q = 0 (i.e., Case 1), let

tq = T ∗ and by using the similar algorithm, we also can find the optimal solution.
Algorithm:

Step 1. Determine T ∗, Q∗, p∗, T ∗
r , p∗r , z and y, respectively.

Step 2. Start with j = 0 and the initial value is ps,j = ν.
Step 3. Put ps,j into (31) and (32) to obtain

∆1(ps,j) ≡ (θ + h)ν[θQ∗ + z]− θ[(ps,j − ν)D(ps,j)− y] and
∆2(ps,j) ≡ (θ + h)ν[θW + z]− θ[(ps,j − ν)D(ps,j)− y].
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(i) If ∆1(ps,j) ≤ 0 ≤ ∆2(ps,j), find the value Ts2,j from (29). Then put Ts2,j into
(33) and solve this equation to obtain the corresponding value ps2,j+1. Let
ps,j+1 = ps2,j+1 and Ts,j = Ts2,j .

(ii) If ∆1(ps,j) > o, find the value TR,j from (11). Then put TR,j into (33) and
solve this equation to obtain the corresponding value ps2,j+1. Let ps,j+1 =
ps2,j+1 and Ts,j = TR,j .

(iii) If ∆2(ps,j) < 0, find the value TW,j from (11). Then put TW,j into (33) and
solve this equation to obtain the corresponding value ps2,j+1. Let ps,j+1 =
ps2,j+1 and Ts,j = TW,j .

Step 4. If the difference between ps,j and ps,j+1 is enough small, (i.e., |ps,j −
ps,j+1| ≤ 10−5), then set p∗s = ps,j and T ∗

s = Ts,j . Thus (p∗s, T
∗
s ) is the

optimal solution. Otherwise, set j = j + 1 and go back to Step 3.

Once the optimal solution (p∗s, T
∗
s ) is obtained, we can determine the optimal

special order quantity Q∗
s = D(p∗s)(e

θT∗s − 1)/θ, and the corresponding maximum
profit increasing g∗i = gi(p

∗
s, T

∗
s ), i = 1, 2.

5. Numerical examples. To illustrate the optimal ordering policy, the following
example is presented:
Example 1. Given an inventory system with the following parameters:
D(p) = 1000 − 8p units/year, where p < 125, ν = $30/unit, k = $5/unit,

A = $250/order, θ = 0.05, h = 0.3, and q = 50. Before unit purchasing cost
increase, the optimal retail price, p∗, the length of replenishment cycle time, T ∗ and
the optimal order quantity, Q∗, can be obtained as p∗ = $78.4386/unit, T ∗ = 0.3554
years and Q∗ = 133.58 units. After unit purchasing cost increase, the optimal retail
price, p∗r , the length of replenishment cycle time, T ∗

r and the optimal order quantity,
Q∗
r , can be obtained as p∗r = $81.0434/unit, T ∗

r = 0.3388 years and Q∗
r = 120.14

units. It is shown that the increase rate of purchasing cost is (k/ν)×100% = 16.67%
and the retailer will reflect supply price increases on retail price with the rate [(p∗r−
p∗)/p∗]×100% = 3.32%. When a supplier announces a price increase that is effective
starting on a particular future date, it can be found that the optimal ordering
policies depend on the limited special order quantity W . The computational results
are shown in Table 1.

From Table 1, some observations can be made as follows. First, for the cases
with lower limited special order quantity (for example, the cases with W ≤ 250
units in Table 1), the optimal policy for the retailer is to adopt the special order
policy and order an upper boundary quantity by supplier supplied, that is Q∗

s = W .

Table 1. Optimal solutions of Example 1 under the different value of W

W p∗s T ∗
s Qs∗ g∗2 r∗

150 79.337 TW = 0.406458 150 712.748 1.1454%
200 79.4738 TW = 0.541730 200 838.907 1.3198%
250 79.6899 Ts2 = 0.678066 250 894.172 1.5953%
300 79.7562 Ts2 = 0.714557 263.31 896.747 1.6798%
350 79.7562 Ts2 = 0.714557 263.31 896.747 1.6798%
400 79.7562 Ts2 = 0.714557 263.31 896.747 1.6798%

Note: r∗ denotes the rate of retail price increase and is defined by

r∗ =
p∗s−p

∗

p∗ × 100%
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In such situation, the higher the limited special order quantity is, the higher the
special order quantity will be. Contrarily, for higher limited special order quantity
(for example, the cases with W ≥ 300 units in Table 1), the optimal policy for the
retailer is to adopt the special order policy which is unaffected by the limited special
order quantity. This result can be shown in Remark 3.

In addition, when a supplier announces a price increase that is effective starting
on a particular future date, the optimal retail price adopting special order policy
will be between regular order policy before price increase and that after price in-
crease due to price-dependent demand rate. That is, the optimal rate of retail price
increase (denoted by r∗ = [(p∗s − p∗)/p∗] × 100%) will be less than or equal to the
rate [(p∗r − p∗)/p∗] × 100% = 3.32%. It implies when the retailer places a special
order to take advantage of current lower price before purchasing price increases,
it will reflect the cost saving on retail price which is related to market demand to
increase the profit.
Example 2. The data used is the same as those in Example 1 except we consider
the case with quadratic demand function, D(p) = 1000 + 8p − 0.5p2 units/year,
where 8 < p < 53.4312, Similarly, p∗ = $43.3341, T ∗ = 0.3398, Q∗ = 139.74,
p∗r = $45.7033, T ∗

r = 0.3544 and Q∗
r = 114.85. It is shown that the increase rate

of purchasing cost is 16.67% and the retailer will reflect supply price increases on
retail price with the rate 5.47%. When a supplier announces a price increase that
is effective starting on a particular future date, it can be found that the optimal or-
dering policies depend on the limited special order quantity W . The computational
results are shown in Table 2. The management insights are similar to Example 1.
Example 3. Due to the insights of Examples 1 and 2 are similar, we only discuss
the influences of changes in major parameters ν, k, A, θ, and h on p∗s, T

∗
s , Q∗

s, g
∗
2

and r∗ of the Example 1. For convenience, the case with fixed W = 350 is taken into
account. The sensitivity analysis is performed by changing each of the parameters
by −20%, −10%, +10% and +20% taking one parameter at a time and keeping the
remains unchanged. The computational results are shown in Table 3.

On the basis of the results in Table 3, the following observations can be made.

(a) The optimal retail price for special order quantity p∗s increases while the op-
timal length of replenishment cycle T ∗

s , the optimal special order quantity
Q∗
s, the maximum total profit increase g∗2 and the optimal rate of retail price

increase r∗ decrease with increases in the values of h and A.

Table 2. Optimal solutions of Example 2 under the different value of W

W p∗s T ∗
s Qs∗ g∗2 r∗

150 44.0927 TW = 0.390224 150 699.473 1.7506%
200 44.2177 TW = 0.524771 200 827.986 2.0390%
250 44.4246 Ts2 = 0.666953 250 886.184 2.5167%
300 44.4838 Ts2 = 0.702568 262.04 888.585 2.6533%
350 44.4838 Ts2 = 0.702568 262.04 888.585 2.6533%
400 44.4838 Ts2 = 0.702568 262.04 888.585 2.6533%

Note: r∗ denotes the rate of retail price increase and is defined by

r∗ =
p∗s−p

∗

p∗ × 100%
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(b) All the optimal retail price for special order quantity p∗s, the optimal length of
replenishment cycle T ∗

s , the optimal special order quantity Q∗
s, the maximum

total profit increase g∗2 and the optimal rate r∗ increase with the increases in
the values of ν and k.

(c) If the value of θ increases, the optimal retail price for special order quantity p∗s,
and the optimal rate r∗ will increase but the optimal length of replenishment
cycle T ∗

s , the optimal special order quantity Q∗
s and the maximum total profit

increase g∗2 will decrease.

6. Conclusions. Recently, due to rapid economic development in emerging na-
tions, the world’s raw material prices have been rising, and the cost of many goods
have been facing upwards pressure; a serious issue for enterprises. Moreover, in
today’s environment of unrestricted information, where retailers can easily obtain
supply price information through various methods, suppliers typically announce im-
pending price increases before they come into effect. In this situation, the retailer
not only has the opportunity to replenish at the present price before the supply
price increase, but also to pass the increased costs on to consumers. In addition,
to avoid excessive retail orders in this situation, suppliers can enforce limited or-
der quantities prior to the price increase. Therefore, in this paper, we investigated
the possible effects of a supply price increase on the retail price and ordering poli-
cies of retailers under the conditions of a limited special order quantity and retail

Table 3. Effect of changes in major parameters of the Example 1

% change in

parameter %change p∗s T ∗
s Q∗

s g∗2 r∗

ν -20 -0.33 -13.53 -13.24 -27.81 -19.80
-10 -0.16 -6.75 -6.59 -14.37 -9.89
10 0.16 6.72 6.54 15.28 9.87
20 0.33 13.41 13.04 31.45 19.70

k -20 -0.14 -5.63 -5.50 -8.63 -0.53
-10 -0.07 -2.74 -2.67 -4.20 -0.26
10 0.06 2.60 2.54 4.01 0.24
20 0.12 5.10 4.96 7.86 0.49

A -20 -0.02 3.00 2.70 2.87 0.11
-10 -0.01 1.48 1.33 1.42 0.05
10 0.01 -1.43 -1.30 -1.38 -0.05
20 0.02 -2.82 -2.56 -2.72 -0.09

θ -20 -0.12 18.37 19.01 17.32 -0.65
-10 -0.06 8.40 8.68 7.95 -0.31
10 0.06 -7.19 -7.40 -6.85 0.30
20 0.11 -13.41 -13.78 -12.81 0.58

h -20 -3.92 22.45 31.44 30.02 4.27
-10 -1.96 10.08 14.09 13.53 2.08
10 1.96 -8.41 -11.71 -11.34 -1.96
20 3.92 -15.56 -21.61 -21.03 -3.83
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price-dependent demand. This has not been previously studied in the relevant liter-
ature. The conditions of the optimal solutions were derived, and an algorithm was
established to obtain the optimal solution. Finally, the theoretical and numerical
results reveal that: (i) the total profit increase function for Case 1 is a little different
from Case 2 with a constant item when q = 0. (ii) When the limited special order
quantity is lower, the optimal policy for the retailer is to adopt the special order
policy and order an upper boundary quantity allowed by the supplier. The higher
the limited special order quantity is, the higher the special order quantity will be.
(iii) As the retailer places a special order to take advantage of the current lower
price, to increase profit they will pass the cost saving onto consumers. It is our
belief that these observations will provide the basis for enterprises to make deci-
sions in inventory management. The proposed model can be extended in several
ways. For example, it is usually observed in the supermarket that display of the
consumer goods in large quantities attracts more customers and generates higher
demand. Hence, the proposed inventory model may deal with the demand rate as
a function of the on-hand inventory. Furthermore, shortages are not allowed and
inflation is not considered in this study. In the future, we hope the model can also
be generalized to allow for shortages and take inflation into account.

Acknowledgments. The authors greatly appreciate the anonymous referees for
their valuable and helpful suggestions regarding earlier version of the paper.

7. Appendix. To prove the last brace term of RHS in (34) is positive, i.e., ln[eθT
∗
s +

z/D(ps)]− [z/D(ps)]/[e
θT∗s + z/D(ps)] > 0, we first let x ≡ ln[eθT

∗
s + z/D(ps)]. It

is obvious that x ≥ ln[eθT
∗
s ] = θT ∗

s , and ex = eθT
∗
s + z/D(ps). Hence,

ln

[
eθT

∗
s +

z

D(ps)

]
−

[
z/D(ps)

eθT
∗
s + z/D(ps)

]
=
xex − ex + eθT

∗
s

ex
. (A1)

Next, we let F (x) = xex − ex + eθT
∗
s and then take the derivative of F (x) with

respect to x ∈ (θT ∗
s ,∞), it gets dF (x)/dx = xex > 0. Thus, F (x) is a strictly

increasing function of x ∈ [θT ∗
s ,∞). Moreover, we know that F (θT ∗

s ) = θT ∗
s e

θT∗s >
0. Therefore, F (x) > 0 for x ∈ [θT ∗

s ,∞), which implies ln[eθT
∗
s + z/D(ps)] −

[z/D(ps)]/[e
θT∗s + z/D(ps)] = F (x)/ex > 0. This completes the proof.
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