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Abstract

Coordination games are important to explain efficient and desirable social behav-
ior. Here we study these games by extensive numerical simulation on networked social
structures using an evolutionary approach. We show that local network effects may
promote selection of efficient equilibria in both pure and general coordination games
and may explain social polarization. These results are put into perspective with re-
spect to known theoretical results. The main insight we obtain is that clustering, and
especially community structure in social networks has a positive role in promoting
socially efficient outcomes.

1 Introduction

Game theory [1] has proved extremely useful in the study of economic, social, and bio-
logical situations for describing interactions between agents having possibly different and
often conflicting objectives. Paradigmatic games such as the Prisoner’s Dilemma [2] have
been used in order to represent the tension that appears in society when individual objec-
tives are in conflict with socially desirable outcomes. Most of the vast research literature
has focused on conflicting situations in order to uncover the mechanisms that could lead to
cooperation instead of socially harmful outcomes (see e.g. [3] for a synthesis). However,
there are important situations in society that do not require players to use aggressive strate-
gies. In fact, many frequent social and economic activities require individuals to coordinate
their actions on a common goal since in many cases the best course of action is to conform
to the standard behavior. For example, if one is used to drive on the right side of the road
and travels to a country where the norm is reversed, it pays off to follow the local norm.
Bargaining and contracts are also of this type because, even though expectancies may be
different between a buyer and a seller, still both would rather trade than not, provided that
the respective prices are not too different. For another example, consider a situation in
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which coordination in working contributions is required in order to produce a good or a
service. In a group it might pay off not to contribute, if this behavior goes unnoticed, but
the total output will be negatively affected. Games that express this extremely common
kind of interactions are called coordination games.

Coordination games confront the players with multiple Nash equilibria and the ensu-
ing problem of equilibrium selection. Given that these equilibria are equivalent from the
game-theoretical point of view, how to explain how agents make their decisions? A useful
approach has been to use evolutionary and learning ideas which offer a dynamical perspec-
tive based on the forces of biological and social evolution. In evolutionary game theory
(EGT), the concept of a population of players where strategies that score best are more
likely to be selected and reproduced provides a justification for the appearance of stable
states of the dynamics that represent solutions of the game [1, 4].
For mathematical convenience, standard EGT is based on infinite mixing populations where
pairs of individuals are drawn uniformly at random at each step and play the game. Correla-
tions are absent by definition and the population has an homogeneous structure. However,
everyday observation tells us that in animal and human societies, individuals usually tend
to interact more often with some specified subset of partners; for instance, teenagers tend
to adopt the fashions of their close friends group; closely connected groups usually follow
the same religion, and so on. Likewise, in the economic world, a group of firms might
be directly connected because they share capital, technology, or otherwise interact in some
way. In short, social interaction is mediated by networks, in which vertices identify people,
firms etc., and edges identify some kind of relation between the concerned vertices such as
friendship, collaboration, economic exchange and so on. Thus, locality of interaction plays
an important role. This kind of approach was pioneered in EGT by Nowak and May [5] by
using simple two-dimensional regular grids. Recently, in the wake of a surge of activity in
network research in many fields [6, 7], the dynamical and evolutionary behavior of games
on networks that are more likely to represent actual social interactions than regular grids
has been investigated (see [8] for a comprehensive recent review). These studies, almost ex-
clusively conducted on games of conflict such as the Prisoner’s dilemma or Hawks-Doves,
have shown that there are network structures, such as scale-free and actual social networks
that may favor the emergence of cooperation with respect to the fully mixing populations
used in the theory [9, 10].

In this work we extend this kind of approach to games of the coordination type. We
shall use several types of network structures, both networks generated by an algorithm as
well as an actual social network to try to unravel the effect of structure on the popula-
tion behavior. In the present paper, we ignore that social networks are actually dynamical
entities that change constantly. Indeed, actors join and leave networks and they may accu-
mulate and abandon ties over time. Using static networks is a useful first approximation
however, especially for the cases where the rate of change of the network structure is slow
with respect to the rate of change of individual’s behaviors which is the approximation that
is made here.1 Comparatively little theoretical work has been done on coordination games
on networks, except for some standard types such as rings or complete networks [11] for

1a companion study on the dynamical network case is in progress.
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which rigorous results have been obtained thanks to their regular structure. Although we do
mention some known rigorous results as discussed below, our methodology is essentially
computer simulation-based. This is because for most network types, inhomogeneity and
correlations do not allow standard mean-field methods to be used. Likewise, pair approx-
imation methods [12] provide an acceptable approach for random and regular graphs but
not for the other more complex types and thus they are not used here.
The paper is organized as follows. In the next section we first present a brief introduction
to the subject of coordination games, in order to make the work self-contained. Then, in
Sect. 3, we enumerate the main theoretical results on coordination games, as well as the
necessary definitions for networks of agents and their dynamics. In Sect. 4 we describe the
simulation methodology and the parameters used and, in Sect. 5 we present and discuss the
simulation results on various network classes first for pure coordination games, and then
for general coordination ones. Finally, in Sect. 6 we give our conclusions and ideas for
future work.

2 Coordination Games

2.1 General Coordination Games

General two-person, two strategies coordination games have the normal form of Table 1.
With a > d and b > c, (α, α) and (β, β) are both Nash equilibria. Now, if we assume that
a > b and (a−d) ≤ (b−c) then (β, β) is the risk-dominant equilibrium, while (α, α) is the
Pareto-dominant one. This simply means that players get a higher payoff by coordinating
on (α, α) but they risk less by using strategy β instead. There is also a third equilibrium
in mixed strategies but it is evolutionarily unstable. A well known example of games of

α β

α a, a c, d
β d, c b, b

Table 1: A general two-person, two strategies coordination game.

this type are the so-called Stag-Hunt games [13]. This class of games has been extensively
studied analytically in an evolutionary setting [14, 11] and by numerical simulation on
several model network types [13, 9, 10, 15]. In the following, we shall first deal with the
easier case of pure coordination games which, in spite of their simplicity, already clearly
pose the equilibrium selection problem. Then we shall report results on Stag-Hunt games,
for which there exist many published studies to compare with, both theoretical and with the
use of simulation.

2.2 Pure Coordination Games

Two-person pure coordination games have the normal form depicted in Table 2, with
ui, ui > 0, and ui, uj = 0, 0, i 6= j,∀i, j ∈ [1, k], where k is the number of strategies
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available to each player in the strategy set S = {s1, s2, ..., sk}, and the u’s are payoffs. So
all the Nash equilibria in pure strategies correspond to diagonal elements in the table where
the two players coordinate on the same strategy, while there is a common lower uniform
payoff for all other strategy pairs which is set to 0 here. A simple coordination game is

s1 s2 . . . sk
s1 u1,u1 0, 0 . . . 0, 0
s2 0, 0 u2,u2 . . . 0, 0
. . . . . . . . . . . . . . .
sk 0, 0 . . . . . . uk,uk

Table 2: A general payoff bi-matrix of a two-person pure coordination game. Nash equi-
libria in pure strategies are marked in bold.

the driving game. In some countries people drive on the right side of the road, while in
others they drive on the left side. This can be represented by the pure coordination game
represented in Table 3. There are two Nash equilibria in pure strategies: (right, right) and

right left
right 1,1 0, 0
left 0, 0 1,1

Table 3: The driving game.

(left, left) and obviously there is no reason, in principle, to prefer one over the other, i.e. the
two equilibria are equivalent. However, while some countries have got accustomed to drive
on the left such as the UK, Australia, and Japan, others have done the opposite such as most
European countries and the USA. Such norms or conventions have stabilized in time and
are often the product of social evolution. There is of course a third equilibrium in mixed
strategies in the driving game which consists in playing left and right with probability 1/2
each but it would seem rather risky to play the game in this way on a real road. Another
well known example of a pure coordination game is the Battle of the Sexes in which the
Nash equilibria in pure strategies are those in which players use the same strategy, but the
two sides in a two person game prefer a different equilibrium [1].

3 Mathematical Setting and Previous Results

In this section, we recall some rigorous results for two-person, two-strategies coordination
games on some particular network types. Indeed, network topology has an influence on the
stable states of the evolutionary dynamics that will be reached, as it will become clear in
what follows. We also give nomenclature and definitions for the graphs representing the
population of agents and for the dynamical decision processes implemented by the agents.

Let’s thus consider the game’s payoff matrix of Table 4 with a ≥ b > 0. When a > b,
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strategy α is said to be dominant since a player obtains a higher payoff playing α rather
than β.

α β

α a, a 0, 0
β 0, 0 b, b

Table 4: A general two-person, two-strategies pure coordination game.

The network of agents will be represented by an undirected graph G(V,E), where the
set of vertices V represents the agents, while the set of edges (or links) E represents their
symmetric interactions. The population size N is the cardinality of V . A neighbor of an
agent i is any other agent j at distance one from i. The set of neighbors of i is called Vi and
its cardinality is the degree ki of vertex i ∈ V . The average degree of the network is called
k̄ and p(k) denotes its degree distribution function, i.e. the probability that an arbitrarily
chosen node has degree k.

Since we shall adopt an evolutionary approach, we must next define the decision rule
by which individuals will update their strategy during time. An easy and well known adap-
tive learning rule is myopic best-response dynamics, which embodies a primitive form of
bounded rationality and for which rigorous results are known [16, 17]. In the local version
of this model, time is discrete i.e. t = 0, 1, 2, . . . and, at each time step, an agent has the op-
portunity of revising her current strategy. She does so by considering the current actions of
her neighbors and switching to the action that would maximize her payoff if the neighbors
would stick to their current choices. The model is thus completely local and an agent only
needs to know her own current strategy, the game payoff matrix, who are her neighbors,
and their current strategies. This rule is called myopic because the agents only care about
immediate payoff, they cannot see far into the future. Given the network structure of the
population, the rule is implemented as follows:

• at each time step a player i revises his strategy with probability p

• player i will choose the action that maximizes his payoff, given that the strategy
profile of his neighbors Vi remains the same as in the previous period

• if there is a tie or i is not given the opportunity of revising his strategy, then i will
keep his current strategy

Using the above kind of stochastic evolutionary process, which can be modeled by a
Markov chain, the following theoretical results have been proved by several researchers
and can be found in Chapter 4 of [17], where references to the original works are given.
They are valid for general coordination games, and thus also for the special case of the pure
coordination game of Table 4.
Theorem. A strategy profile in which everyone plays the same action is a Nash equilibrium
for every graph G. If G is complete then these are the only possible equilibria. If G is
incomplete, then there may exist polymorphic equilibria as well.
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The preceding theorem implies that social diversity may emerge at equilibrium depend-
ing on the network structure. Given that complete networks are not socially relevant, this
result leaves open the possibility of equilibrium strategy distributions in the population.
A second related result states that, starting from any initial strategy profile, the above de-
scribed stochastic process will converge to a Nash equilibrium of the coordination game
with probability 1. To probe for the stability of equilibria, the concept of mutation is intro-
duced. A mutation simply means that a player that is updating its current strategy can make
a mistake with some small probability q. These small random effects are meant to capture
various sources of uncertainty such as deliberate and involuntary decision errors. Deliber-
ate errors might play the role of experimentation in the environment, and involuntary ones
might be linked with insufficient familiarity with the game, for example. A state of this
adaptive noisy dynamics is called stochastically stable if in the long term, the probability
of being in that state does not go to tero as the error probability tends to zero (see [16] for
a rigorous definition). This idea allows one to discriminate among the possible equilibria
according to their stability properties.

From the above considerations, it may be concluded that the network topology plays
an important role on the equilibrium states that the population will reach in the long run.
However, the graph types for which analytical results are available are far from the com-
plex structures of observed real social networks. Therefore, our aim in the following is to
characterize the behavior of such complex networks by using numerical simulations and
appropriate statistical analysis.

4 Numerical Simulations Methodology

4.1 Network Types Studied

In the last few years a large amount of knowledge has accumulated about the structure of
real social networks and many model networks, both static and growing have been pro-
posed [6, 7, 18]. We are thus in a position that allows us to make use of this recent in-
formation in order to study the behavior of coordination games on such realistic networks.
In detail, we shall use the following network types: random, Barábasi-Albert scale-free
networks, a real social network, and model social networks. We shall now briefly describe
each of these network types, directing the reader to the relevant references for more details.

4.1.1 random graphs

For generating random graphs we use one of the classical models proposed by Erdös and
Rényi and described in [19]. Given N indistinguishable vertices, each possible edge has an
independent probability p of appearing (0 ≤ p ≤ 1), which gives the G(N, p) ensemble of
random graphs. It is worth mentioning that for that type of random graph the average clus-
tering coefficient2 C̄ = p = k̄/N . Thus C̄ at fixed k̄ tends to 0 for increasingN . This is one

2We use the following common definition. The clustering coefficient Ci of a node i is defined as Ci =
2Ei/ki(ki − 1), where Ei is the number of edges in the neighborhood of i. Thus Ci measures the amount
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of the reasons that make these random graphs rather unsuitable as model social networks,
although they are useful as a known benchmark to evaluate deviations from randomness.
Furthermore, p(k) = e−k̄ k̄k

k! is Poissonian and thus it allows only small fluctuations around
k̄, while actual measured networks usually have long-tailed degree distribution functions.

4.1.2 Scale-Free graphs

Among the several available models for constructing scale-free networks [6], here we use
the classical one by Barabási–Albert [20]. Barabási–Albert networks are grown incremen-
tally starting with a small clique of m0 nodes. At each successive time step a new node is
added such that its m ≤ m0 edges link it to m nodes already present in the graph. It is
assumed that the probability p that a new node will be connected to node i depends on the
current degree ki of the latter. This is called the preferential attachment rule. The probabil-
ity p(ki) of node i to be chosen is given by p(ki) = ki/

∑
j kj , where the sum is over all

nodes already in the graph. The model evolves into a stationary network with power-law
probability distribution for the vertex degree P (k) ∼ k−γ , with γ ∼ 3. For the simulations,
we started with a clique of m0 = 2 nodes and at each time step the new incoming node has
m = 2 links.
Scale-free graphs are rather extreme and are infrequent among social networks (see below),
even taking finite degree cutoffs into account. As the random graph, they are rather to be
considered as a model network.

4.1.3 An Actual Social Network

One important reason for introducing true or model social networks is that, as said above,
clustering is an important feature in networks of contacts while neither Erdös-Rényi nor
Barabási-Albert scale-free graphs show a comparable level of clustering. As a typical ex-
ample of a true social network, we use a coauthorship network among researchers in the
genetic programming (GP) community. This network has a connected giant component of
1024 scientists and it has recently been analyzed [21]. It has clusters and communities and
it should be representative of other similar human acquaintance networks. Its degree distri-
bution function p(k), as is usually the case with most measured social networks [22, 6, 18],
is not a pure power-law; rather, it can be fitted by an exponentially truncated power-law.

4.1.4 Model Social Networks

Several ways have been proposed for growing artificial networks with properties similar
to those of observed social networks. Here we use the model of Toivonen et al. [23],
which was conceived to construct a graph with most of the desired features of real-life
social networks i.e, assortative, highly clustered, showing community structures, having
an adjustable decay rate of the degree distribution, and a finite cutoff. The network is

of “cliquishness” of the neighborhood of node i and it characterizes the extent to which nodes adjacent to
node i are connected to each other. The clustering coefficient of the graph is the average over all nodes:
C̄ = 1

N

∑N
i=1 Ci [6]
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incrementally grown starting from a seed of m0 randomly connected vertices. At each
successive time step, the following algorithm is applied:

1. On average mr ≥ 1 random vertices are picked to be initial contacts.

2. On average ms ≥ 0 neighbors of the mr initial contacts are chosen to be secondary
contacts.

3. A newly added vertex v is connected to all the initial and secondary contacts deter-
mined in the two previous steps.

The above is iterated until the network reaches the desired size. Notice that the process
responsible for the appearance of high clustering, assortativity and community structure
is step 2. In the numerical experiments, we used graphs of size N = 1000 with m0 =
30 initial nodes. Every time a new node is added, its number of initial contacts mr is
distributed as p(# of initial contacts = 1) = 0.95 and p(# of initial contacts = 2) = 0.05.
The number of its secondary contacts ms is uniformly distributed between 0 and 3. The
resulting degree distribution falls below a power-law for high values of k [23].

4.2 Simulations Settings

The network used are of sizeN = 1000 except for the GP network, whose giant component
has size 1024. The mean degree k̄ of the networks generated was 6, except for the GP case
which has k̄ ' 5.8.
For pure coordination games the non-zero diagonal payoffs a (see sect. 2.2) has been var-
ied in the range [0.5, 1] in steps of 0.05 with b = 1− a; the range [0, 0.5] is symmetrically
equivalent. For general coordination games (sect. 2) in which a > d > b > c, we have
studied a portion of the parameters’ space defined by c ∈ [−1, 0] and d ∈ [0, 1], a = 1, and
b = 0, as is usually done for the stag-hunt games [9, 15]. The c−d plane has been sampled
with a grid step of 0.05.
Each value in the phase space reported in the following figures is the average of 50 inde-
pendent runs. Each run has been performed on a fresh realization of the corresponding
graph, except for the GP co-authorship network case which is a unique realization.
As already hinted in sect. 3, we have used a fully asynchronous update scheme in which a
randomly selected agent is chosen for update with replacement at each discrete time step.
To detect steady states3 of the dynamics we first let the system evolve for a transient period
of 5000 × N ' 5 × 106 time steps. After a quasi-equilibrium state is reached past the
transient, averages are calculated during 500×N additional time steps. A steady state has
always been reached in all simulations performed within the prescribed amount of time, for
most of them well before the limit.
We have experimented with different proportions of uniformly randomly distributed initial
strategies α belonging to the set {0, 0.05, 0.25, 0.5, 0.75, 0.95, 1} and we have used two

3True equilibrium states in the sense of stochastic stability are not guaranteed to be reached by the simulated
dynamics. For this reason we prefer to use the terms steady states or quasi-equilibrium states which are states
that have little or no fluctuation over an extended period of time.
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different values for the stochastic noise q in the simulations: q ∈ {0, 0.02}, i.e. either no
noise or a small amount, as prescribed by the most important theoretical stochastic models
in order to ensure that the evolutionary process is ergodic [14, 11, 16].

5 Simulation Results

5.1 Results on Pure Coordination Games

Figures 1 and 2 show global coordination results for random graphs and scale-free graphs
respectively. The plots report on the x-axis the payoff advantage of strategy α with respect
to strategy β, which goes from 0 to 1, and on the y-axis the frequency of α-strategists in
the population. The curves represent average values over 50 runs for each sampled point.
By simple inspection, it is clear that results do not differ by a large extent between the ran-
dom and the scale-free cases, which means that the degree distribution function has little
effect on the outcome. The general trend is for all the populations to converge toward the
payoff-dominant Nash equilibrium in pure strategies which is also the case for the stan-
dard well-mixed population, as we know from analytical results. Polymorphic populations
do exist temporarily but they are unstable and the stochastic dynamics always reaches a
monomorphic state. It is also quite obvious that without mutations (Figs. 1 and 2 left-hand
images), if a strategy is absent at the beginning, it cannot appear later. Instead, with even
a small amount of noise (q = 0.02 in the figures), the strategy offering the best payoff
will take over the population thanks to repeated mutations that will create individuals play-
ing that strategy (Figs. 1 and 2 right-hand images) even in case the strategy is absent in
the initial population. Furthermore, noise always promotes a quicker transition toward the
payoff-dominant steady state.
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Figure 1: Random network: k̄ = 6. Left image refers to noiseless best response dynamics.
The right image is for a noisy dynamics with q = 0.02. Graphics report the frequency of
strategy α in the population as a function of the payoff difference a − b. Continuous lines
are just a guide for the eye.

Figures 3 and 4 depict the same quantities as above in the case of the real social network
and model social networks respectively. Although the general behavior is the same, i.e. the
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Figure 2: Scale-free network: Barabasi-Albert Model, k̄ = 6. Left image refers to noiseless
best response dynamics. In the right image the probability of mutation is q = 0.02. On the
y-axis the frequency of strategy α is plotted against the payoff difference a− b.

Pareto-dominant steady state is reached in most situations, some aspects of the dynamics
differ from the case of random and scale-free networks. To begin with, one sees on the
left-hand images that, without noise, the payoff dominated strategy is able to resist in the
population when the payoff differences are small. For example, starting with an equal initial
share of strategies α and β, one sees in Figs. 3 and 4 that, up to a difference in payoffs of
0.02 the Pareto-dominated strategy is still present in the population with a sizable fraction.
This phenomenon can be explained by looking at the clusters present in the social networks.
Results will be presented below.

But the main remark is that, in the presence of noise, the payoff-dominant stable state
is reached for smaller differences in payoff (see right-hand images). In other words, a
small a− b advantage is enough to quickly steer the dynamics towards the dominant quasi-
equilibrium. The behavior is sufficiently different from the previous one to require at least a
qualitative explanation, which is presented next by introducing the concept of communities.

5.2 Social Communities and Game Strategies

Communities or clusters in networks can be loosely defined as being groups of nodes that
are strongly connected between them and poorly connected with the rest of the graph.
These structures are extremely important in social networks and may determine to a large
extent the properties of dynamical processes such as diffusion, search, and rumor spread-
ing among others. Several methods have been proposed to uncover the clusters present in
a network (for a review see, for instance, [24]). In order to study the effect of community
structure on the distribution of behaviors at steady state, here we have used the divisive
method of Girvan and Newman [25] which is based on iteratively removing edges with a
high value of edge betweennes.
The presence of communities has a marked effect on the game dynamics. Figure 5 depicts
the community structure of a Barabási–Albert scale-free graph (a) and of a model social
network built according to Toivonen et al’s model (b). The difference is striking: while
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Figure 3: Coauthorship network in the Genetic Programming community. Left image: no
noise. Right image: mutation probability q = 0.02. On the y-axis we report the fraction of
α-strategists in the population as a function of the payoff difference a− b.
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Figure 4: Model social network. Left: mutation probability q = 0; right: q = 0.02. On the
y-axis we report the fraction of α-strategists in the population as a function of the payoff
difference a− b.

clear-cut clusters exist in (b), almost no recognizable communities can be isolated in (a), a
fact that is shown by the high number of links between clusters, with a communities graph
average degree of ∼ 32, while k̄ is about 6.5 for the communities graphs arising from so-
cial networks. A common statistical indicator of the presence of a recognizable community
structure is the modularity Q. According to Newman [26], where quantitative definitions
are given, modularity is proportional to the number of edges falling within clusters minus
the expected number in an equivalent network with edges placed at random. While modu-
larity is not without flaws [27], it is still a convenient indicator of the presence of clusters.
In general, networks with strong community structure tend to have values of Q in the range
0.4− 0.7. Indeed, for the networks in Fig. 5, we have Q ' 0.3 for the scale-free network,
while Q ' 0.6 for the model social network. Colors in the figure represent frequency of
strategies at steady state for a single particular, but representative, run in each case. In the
average over 50 runs, final proportions of strategies α and β do not depart much from the
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(a) (b)

Figure 5: Distribution of strategies at steady state in the network communities when both
strategies share the same payoff: a = b = 0.5. (a) scale-free, frequency of α = 0.568. (b)
model social network, fraction of α = 0.585. Each vertex represents a whole community
with size proportional to the size of the community. Links represent inter-community con-
nections and their thickness is proportional to the number of inter-community links. The
communities are much less interconnected in the social network and this causes a greater
difference in concentration from community to community.

initial 50%. However, while in the scale-free case at the steady state the standard deviation
is high, meaning that the system converges often to one or the other equilibrium, this is
not the case for the social networks. In the latter, at steady state there is always a mix of
strategies; in other words, polymorphic equilibria may be stable. This is a remarkable fact
that is due to the community structure of social networks, which is almost missing in the
scale-free and random network cases. Thanks to this clear-cut cluster structure, as soon as
the nodes of a cluster are colonized by a majority of one of the two strategies by statistical
fluctuation, it becomes difficult for the other strategy to overtake, which explains why these
cluster strategies are robust. The effect of the community structure is even more apparent
in Fig. 6 where strategy α has been given a slight initial advantage. At steady state, in both
the co-authorship network (a) as well as the model network (b) strategy β is still present in
some clusters. If we were to interpret strategies as social norms or conventions, then this
would suggest that a realistic social structure may help protect diversity, either political or
cultural, for example. The possibility of polymorphic equilibria had been theoretically pre-
dicted by Morris [28] for symmetric payoffs in pure coordination games with best response
dynamics in the case of infinite populations and making use of a notion of “cohesion”
which refers to the relative frequency of ties among groups compared with non-members.
Clearly, although it was expressed in a different language that does not make explicit use of
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networks, this notion is related to the communities we have here and the simulation results
nicely confirm the prediction in the case of finite, actual networked systems.

(a) (b)

Figure 6: Strategy distribution in the network communities when α has a small advantage
over β: a = 0.55. (a) Genetic Programming co-authorship network, proportion of α =
0.839. (b) model social network, proportion of α = 0.833. The cluster structure of these
networks allows the preservation of the dominated strategy in some communities.

5.3 Results on the Stag Hunt Games

Figure 7 shows strategy distribution on the game parameter space for the Stag Hunt class of
coordination games for the scale-free case. Results for random graphs are similar to those
for scale-free networks and are not shown. The two upper images are for equal initial pro-
portions of each strategy, while the bottom figures refer to an initial proportion of strategy
α = 5%. The first image in each row is for best response without noise, while the second
image has noise level q = 0.02.
For initially equidistributed strategies, although average values are reported in the figures,
almost all simulations attain one or the other absorbing state, i.e. all individuals play α or
all play β, and there is almost no difference when noise is present. This is in agreement
with previous results on scale-free graphs published by Roca et al. [29] where update was
by best response without noise, and also with [10] where replicator dynamics instead of
best response dynamics was used as a strategy update rule.
For the more extreme case in which initially the fraction of strategy α is 5% randomly
distributed over the graph vertices (bottom row images), a small amount of random noise
does not have a large effect: the cooperative strategy emerges in the favorable region of the
parameter space, i.e. for low d and high c (upper left corner) in both cases. However, the
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Figure 7: Distribution of strategies proportions at steady state on the d− c plane for scale-
free networks. Each sampled point is the average of 50 independent runs. The upper images
are for equal initial proportions of each strategy. In the lower figures the initial proportion
of randomly distributed α-strategists is 5%. Figures on the left column are for best response
dynamics without noise, while those on the right column represent a situation in which the
probability of mutation q = 0.02. Darker colors mean that risk-dominance prevails; light
color design the region where payoff-dominance prevails.

presence of noise enhances the efficient coordination region. Indeed, even when strategy α
is initially absent, once it is created by mutation, it spreads as in the 5% case. It is to be
noted that the same phenomenon happens when the minority strategy is β = 0.05; in this
case the images are specularly symmetrical, and with colors reversed, with respect to the
main diagonal, except for sampling differences (not shown to save space).
Figure 8 depicts average results for the model social network case of Toivonen et al. [23].
Results for the collaboration network are very close to those of model social networks. For
this reason, and in order not to clutter the graphics too much, we do not show them. It is
immediately apparent that the case in which strategies are initially randomly distributed in
equal amounts seems similar to the scale-free results. However, looking more carefully, the
average results shown in the figures hide to some extent the fact that now many simulations
do not end in one of the monomorphic population states, but rather there is a mix of the
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Figure 8: Distribution of strategies proportions at steady state on the d− c plane for model
social networks. Each sampled point is the average of 50 independent runs. The upper
images are for equal initial proportions of each strategy. In the lower figures the initial
proportion of randomly distributed α-strategists is 5%. Figures on the left column are for
best response dynamics without noise, while those on the right column represent a situation
in which the probability of mutation q = 0.02. Darker colors mean that risk-dominance
prevails; light color design the region where payoff-dominance prevails.

two strategies, when noise is absent. This is visible in the upper left figure in the less crisp
frontier along the diagonal which is due to a more gradual transition between phase space
regions. However, when a small amount of noise is present (upper right image) the transi-
tion is again sharp and the dynamics usually leads to a monomorphic population in which
one of the two absorbing states is entered. The reason why there can be mixed states in the
noiseless case in social networks is related to their mesoscopic structure. As we have seen
in sect. 5.2, model and real social networks can be partitioned into recognizable clusters.
Within these clusters strategies may become dominant as in the pure coordination case just
by chance. In other words, as soon as a strategy dominates in a given cluster, it is difficult
to eradicate it from outside since other communities, being weakly connected, have little
influence. This kind of effect in the Stag Hunt game has been observed previously in sim-
ulations on grid-structured populations [13, 29]. However, grid structures are not socially
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realistic; thus, the fact that more likely social structure do support efficient outcomes is an
encouraging result. However, when noise is present, there is always the possibility that
the other strategy appears in the cluster by statistical fluctuations and, from there, it can
takeover the whole community. To end this section, we remark that analogous effects due
to the presence of clusters in social networks have been observed and interpreted in the
Prisoner’s Dilemma game in [30, 10].

We now briefly comment on the relationship between our numerical results and well
known theoretical results on Stag-Hunt games. These theoretical models are based on
ergodic stochastic processes in large populations and state that, when using best-response
dynamics in random two-person encounters, and in the presence of a little amount of noise,
both for well-mixed populations as well as for populations structured as rings, the risk-
dominant strategy should take over the population in the long run [14, 11, 16]. From our
simulation results on all kind of networks this is not the case; in other words, at the steady
state there is always either a single strategy, but not necessarily the risk-dominant one, or
a mix of both strategies. For scale-free and random graphs, the numerical results of [29]
agree with ours. The case of social networks, presented here for the first time, also confirms
the above and in addition makes explicit the role played by communities. We may also
mention at this point that, for the Stag-Hunt, the presence of a local interaction structure
provided by a network has been shown to increase the region of the phase space in which the
Pareto-dominant outcome prevails for other strategy update rules, such as imitate the most
successful neighbor or reproduce proportionally to fitness (replicator dynamics) [13, 15].
Thus coordination is sensitive to the exact type of underlying dynamics in networks. This
is indirectly confirmed by the theoretical study of Robson and Vega-Redondo [31] in which
a different matching model is used with respect to Kandori et al [14]. In [31] players are
immediately randomly rematched after each encounter and the result is that the Pareto-
dominant equilibrium is selected instead.
In summary, it can be said that network effects tend to reinforce cooperation on the Pareto-
dominant case, which is a socially appreciable effect. However, these results must be taken
with a grain of salt. We are numerically studying finite, network-structured populations
during a limited amount of time, while theoretical results have been established for large
well mixed populations in the very long run. The conditions are thus sufficiently different to
conclude that numerical results and theoretical predictions based on different assumptions
do not have to agree necessarily.

6 Summary and Conclusions

In this work we have studied pure and general coordination games on complex networks by
numerical simulation. Situations described by coordination games are common in society
and it is important to understand when and how coordination on socially efficient outcomes
can be achieved.
In the case of pure coordination games on model networks using deterministic best re-
sponse strategy dynamics we have found that network effects are small or non-existent in
standard complex networks. On model social networks and a real co-authorship network
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the behavior is similar, but the transition from one convention to the other is smoother and
the cluster structure of the networks plays an important role in protecting payoff-weaker
conventions within communities and this leads to a clear polarization of conventions in the
network. When a small amount of noise is added in order to simulate errors and trembles in
the agent’s decisions, the dynamics leads to the payoff-dominant norm for smaller values
of the payoff difference between strategies. However, in the case of social networks, even a
tiny amount of payoff advantage is enough to drive a minority of α-strategists to take over
the whole network thanks to the cluster structure and mutations.
In the case of general coordination games of the Stug Hunt type where there is a tension
between payoff-dominance and risk-dominance, we have confirmed previous simulation
results in the sense that, with deterministic best response dynamics the influence of net-
work structure is very limited [13, 29, 15, 10]. On the other hand, when we consider
model and social networks, again their community structure plays an important role which
consists in allowing the existence at steady state of dimorphic populations in which both
strategies are present and stable. The payoff-dominant strategy is favored in regions where
risk-dominance should be the only stable strategy and, conversely, it allows risk-dominant
players to survive in clusters when payoff-dominance should prevail.
We have also compared numerical results with theoretical ones when they exist. The lat-
ter actually depend on the detailed structure of the stochastic processes generated by the
particular theoretical model. In this sense, numerical results are compatible with theoret-
ical predictions when they are applicable, i.e. for well mixed and ring-structured popula-
tions [14, 31, 11]. Also, for pure coordination games the predictions of [28] in arbitrary
non-homogeneous structures are qualitatively confirmed. However, finite-size and complex
network effects are difficult to describe theoretically and thus our results on complex and
social networks cannot always be easily compared with theoretical predictions. Our cur-
rent and future work is to investigate coordination games in a more realistic co-evolutionary
scenario in which both the agents’ strategies as well as their interactions may vary dynam-
ically.
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