22 research outputs found

    Synthesis and Characterization of pH Responsive D-Glucosamine Based Molecular Gelators

    Get PDF
    Small molecular gelators are a class of compounds with potential applications for soft biomaterials. Low molecular weight hydrogelators are especially useful for exploring biomedical applications. Previously, we found that 4,6-O-benzylidene acetal protected D-glucose and D-glucosamine are well-suited as building blocks for the construction of low molecular weight gelators. To better understand the scope of D-glucosamine derivatives as gelators, we synthesized and screened a novel class of N-acetylglucosamine derivatives with a p-methoxybenzylidene acetal protective group. This modification did not exert a negative influence on the gelation. On the contrary, it actually enhanced the gelation tendency for many derivatives. The introduction of the additional methoxy group on the phenyl ring led to low molecular weight gelators with a higher pH responsiveness. The resulting gels were stable at neutral pH values but degraded in an acidic environment. The release profiles of naproxen from the pH responsive gels were also analyzed under acidic and neutral conditions. Our findings are useful for the design of novel triggered release self-assembling systems and can provide an insight into the influence of the the structure on gelation

    Performance evaluation of induced mutant lines of black gram (Vigna mungo (L.) Hepper)

    Get PDF
    Article Details: Received: 2020-01-12      |      Accepted: 2020-03-02      |      Available online: 2020-06-30https://doi.org/10.15414/afz.2020.23.02.70-77 Present investigation was carried out to explore the possibility of inducing genetic variability for yield and yield contributing traits in well-adapted variety PU-19 of black gram (Vigna mungo (L.) Hepper) following mutagenesis with methyl methane sulfonate (MMS), sodium azide (SA) and hydrazine hydrate (HZ). A considerable increase in mean values for fertile branches per plant, pods per plant and total plant yield was noticed among the mutant lines in M4 and M5 generations. Estimates of genotypic coefficient of variation, heritability and genetic advance for yield and yield components were also recorded to be higher compared to control. MMS followed by SA and HZ showed highest mutagenic potential for improving total plant yield of black gram var. PU-19. Treatment concentration 0.3% was found to be most effective in generating significant increase in total plant yield of black gram var. PU-19. The increased genetic variability for yield and yield components indicates the ample scope of selection for superior mutants in subsequent generations due to preponderance of additive gene action.Keywords: black gram, mutagenesis, chemical mutagens, genetic variability, yield componentsReferences AHLOOWALIA, B., MALUSZYNSKI, M. and NICHTERLEIN, K.(2004). Global impacts of mutation derived varieties. Euphytica, 135, 187. ANNUAL REPORT (2016–2017). In: Government of India, Ministry of Agriculture and Farmers Welfare, Department of Agriculture, Cooperation and Farmers Welfare, Directorate of Pulses Development, Vindhyachal Bhavan, India. AUTI, S. G. (2012). Induced morphological and quantitative mutants in mungbean. Biorem. Biodiv. Bioavail., 6 (Special Issue), 27-39. BHATIA, C. R. and SWAMINATHAN, M. S. (1962). Induced polygenic variability in bread wheat and its bearing on selection procedure. Z. Pflanzenzucht., 48, 317–328. DEWANJEE, S. and SARKAR, K. K. (2017). Evaluation of performance of induced mutants in mungbean (Vigna radiata (L.) Wilczek). Legume Res. DOI: https://doi.org/10.18805/lr.v0iOF.9098 GILL, R. K., KUMAR, A., SINGH, I. and TYAGI, V. (2017). Assessment of induced genetic variability in black gram (Vigna mungo (L.)Hepper). J. Food Legumes, 30(2), 31–34.GIRI, S. P., TAMBE, S. B. and APPARAO, B. J. (2010). Induction of a novel, high yielding mutant of pigeon pea. Asian J. Exp. Biol. Sci., (Special Issue), 152–155. GOYAL, S., WANI, M. R. and KHAN, S. (2019). Gamma rays and ethyl methane sulfonate induced early flowering and maturing mutants in urdbean (Vigna mungo (L.) Hepper). Int. J. Bot., 15, 14–21. JOHNSON, H. W., ROBINSON, H. F. and COMSTOCK, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agron. J., 47, 314–318. KAUL, M. L. H. and GARG, R. (1982). Radiation genetic studies in garden pea. XIII. Genetic variability, interrelationships and path analysis in protein rich genotypes. Biol. Zbl., 101, 271–282.KHAN, S. and WANI, M. R. (2005). Genetic variability and correlations studies in chickpea mutants. J. Cytol. Genet., 6, 155–160. KHAN, S., WANI, M. R. and PARVEEN, K. (2004). Induced genetic variability for quantitative traits in Vigna radiata (L.) Wilczek. Pakistan J. Bot., 36(4), 845–850. LASKAR, R. A. and KHAN, S. (2017). Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLoS ONE, 12(9), e0184598. LASKAR, R. A., KHAN, H. and KHAN, S. (2015). Chemical Mutagenesis: Theory and Practical Application in Vicia faba L. Lap Lambert Academic Publication, Germany. LASKAR, R. A., KHAN, S., DEB, C. R., TOMLEKOVA, N., WANI, M. R., RAINA, A. and AMIN, R. (2019). Lentil (Lens culinaris Medik.) Diversity, Cytogenetics and Breeding. In: Advances in Plant Breeding Strategies: Cereals and Legumes. (eds.) J. M. Al-Khayri, S. M. Jain and D. V. Johnson. Springer International Publishing, pp. 319–370. LASKAR, R. A., LASKAR, A. A., RAINA, A., KHAN, S. and YOUNUS, H. (2018). Induced mutation analysis using biochemical and molecular characterization of high yielding lentil mutant lines. International Journal of Biological Macromolecules, 109,167–179. MBA, C. (2013). Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy, 3, 200–231.MOA&FW (2020). Ministry of Agriculture and Farmers Welfare, National Initiative for Information on Quality Seed, India. RAINA, A., KHAN, S., WANI, M. R., LASKAR, R. A. and MUSHTAQ, W. (2019). Chickpea (Cicer arietinum L.) Cytogenetics, Genetic Diversity and Breeding. In: Advances in Plant Breeding Strategies: Cereals and Legumes. (eds.) J. M. Al-Khayri, S. M. Jain and D. V. Johnson. Springer International Publishing, pp. 53–112. RAINA, A., LASKAR, R. A., WANI, M. R., KHURSHEED, S. and KHAN, S. (2020). Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Scientific Reports, (10), 3687, 1–22. RAUT, V. K., PATIL, J. V. and GAWANDE, V. L. (2004).Correlation and path analysis for quantitative traits in chickpea. Indian J. Pulses Res., 17(1), 82–83. SHU, Q. Y., FORSTER, B. P. and NAKAGAWA, H. (2012). Plant mutation breeding and biotechnology. CABI, WallingfordSIKORA, P. P, CHAWADE, A. A, LARSSON, M., OLSSON, J. and OLSSON, O. (2011). Mutagenesis as a tool in plant genetics, functional genomics and breeding. Int J Plant Genom, 2011, 314829. doi: https://doi.org/10.1155/2011/314829 SINGH, G., SAREEN, P. K., SAHARAN, R. P. and SINGH, A. (2001). Induced variability in mungbean (Vigna radiata (L.) Wilczek). Indian J. Genet., 61(3), 281–282. SINGH, R. K. and CHAUDHARY, B. D. (1985). Biometrical Methods in Quantitative Genetic Analysis. Ludhiana: Kalyani Publishers. TOMLEKOVA, N. B., KOZGAR, M. I. and WANI, M. R. (2014). Mutagenesis-exploring novel genes and pathways. Wageningen Academic Publishers, Netherlands. WAGHMARE, V. N. and MEHRA, R. B. (2000). Induced genetic variability for quantitative characters in grass pea (Lathyrus sativus L.). Indian J. Genet., 60, 81–87. WANI, M. R. (2007). Studies on the induction of mutations in mungbean (Vigna radiata (L.) Wilczek). Ph. D. Thesis. Aligarh: Aligarh Muslim University, India. WANI, M. R. (2018). Early maturing mutants of chickpea (Cicer arietinum L.) induced by chemical mutagens. Indian J. Agric. Sci., 88(4), 635–640

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Coca-Cola India: Losing Its Fizz

    No full text
    AbstractThe Coca-Cola Company, acknowledged as one of the world's most valuable and recognized brands, was the largest nonalcoholic beverage company in the world. It offered a portfolio of sparkling and still beverages in almost 200 countries, starting with Coca-Cola and extending to over 400 soft drinks, juices, teas, coffees, waters, sports and energy drinks in the year 2007. The company had, till date, invested over USA' 1 billion in India and employed over 5000 people, owning 60% of share of the beverage market. The company claimed to adhere to the 'highest ethical standards' and aspired to be an outstanding corporate citizen in every community it served (as stated in the 2006 Corporate Responsibility Review: The Coca-Cola Company). Yet Coca-Cola India was being charged with several indictments for degrading the environment. This case compares and contracts the firm's stated corporate social responsibility (CSR) with the reality of the company's actual practices. The company was being accused of dying up farmers' wells and destroying agricultural land in its pursuit of water resources to feed its own plants. With the campaign against Coca-Cola in India intensifying and catching international attention, the company undertook image building through its multi-million dollar marketing campaigns. The case questions the authenticity of firm's CSR initiatives in the light of its inability to manage the delicate community-business relationship. The case also discusses Corporate Social Responsibility as the extent against which and the way in which an organization needs to be consciously responsible for and accountable for its actions and non-actions and the impact of these on its stakeholders and ultimately the firms' sustainability.Keywords: Corporate Social Responsibility, Community-Business Relationship, Firms' Sustainabilit
    corecore