15 research outputs found

    Case report: Immune response characterization of a pseudoprogression in a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated metastatic NSCLC

    Get PDF
    A patient with a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated metastatic non-small cell lung cancer (NSCLC) experienced a multisite radiological progression at 3 months after initiation of chemoimmunotherapy as first-line treatment for metastatic disease. After the radiological progression, while she was not undergoing treatment, the patient had spontaneous lesions shrinkage and further achieved a prolonged complete response. Genomic and transcriptomic data collected at baseline and at the time of pseudoprogression allowed us to biologically characterize this rare response pattern. We observed the presence of a tumor-specific T-cell response against tumor-specific neoantigens (TNAs). Endogenous retroviruses (ERVs) expression following chemoimmunotherapy was also observed, concurrent with biological features of an anti-viral-like innate immune response with type I IFN signaling and production of CXCR3-associated chemokines. This is the first biological characterization of a NSCLC pseudoprogression under chemoimmunotherapy followed by a prolonged complete response in a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated NSCLC. These clinical and biological data underline that even patients with multiple factors of resistance to immune checkpoint inhibitors could trigger a tumor-specific immune response to tumor neoantigen, leading to complete eradication of the tumor and probably a vaccinal immune response

    TCR Clonality and Genomic Instability Signatures as Prognostic Biomarkers in High Grade Serous Ovarian Cancer

    No full text
    Purpose: Immune infiltration is a prognostic factor in high-grade serous ovarian carcinoma (HGSC) but immunotherapy efficacy is disappointing. Genomic instability is now used to guide the therapeutic value of PARP inhibitors. We aimed to investigate exome-derived parameters to assess the tumor microenvironment according to genomic instability profile. Methods: We used the HGSC TCGA (the cancer genome atlas) dataset with genomic characteristics, including homologous recombination deficiency (HRD), copy number variant (CNV) signatures, TCR (T cell receptor) clonality and abundance of tissue-infiltrating immune and stromal cell populations. We then investigated the relationship with survival data. Results: In 578 HGSC patients, HRD status, CNV signature 7 and TCR clonality were associated with longer survival. The combination of high CNV signature 7 expression and HRD status or high CNV signature 3 expression and high TCR clonality was associated with a trend towards longer survival compared to each variable alone. Combining T cell infiltrate and TCR clonality improved the prognostic value compared to T cells infiltration alone. Prognostic value of TCR clonality was confirmed in an independent cohort. Conclusions: TCR clonality is an emerging prognostic biomarker that improves T cell infiltrate information. Analysis of TCR clonality combined with genomic instability could be an interesting prognostic biomarker

    Advancing precision oncology through systematic germline and tumor genetic analysis: The oncogenetic point of view on findings from a prospective multicenter clinical trial of 666 patients

    No full text
    Abstract Introduction With the emergence of targeted therapies, there is a need to accurately identify more tumor biomarkers. The EXOMA trial was designed to offer tumor and germline exome sequencing (ES) to patients with solid malignant tumors and facing therapeutic failure. As hereditary cancer predispositions could be identified, with genetic counseling and health management implications, a genetic consultation was systematically established. This design needs to be discussed as genetic human resources are limited and indication of theranostic tests will increase. Methods Genetic counseling was conducted within 15 days following inclusion in the study for patients recruited between December 2015 and July 2019. In silico analyses from theranostic ES were limited to 317 genes involved in oncogenesis, from both tumor and blood DNA. Results Six hundred and sixty six patients had a genetic consultation before ES. In 65/666 patients, 66 germline pathogenic or likely pathogenic (P/LP) variants were identified in 16 actionable genes and seven non‐actionable genes according to French guidelines. 24/65 patients had previously received genetic analysis for diagnostic purposes, and for 17 of them, a P/LP variant had already been identified. Among the 48/65 remaining cases for which the EXOMA protocol revealed a previously unknown P/LP variant, only 19 met the criteria for genetic testing for inherited cancer risk after familial survey. These criteria had not been identified by the oncologist in 10 cases. In 21/65 cases, the variant was considered incidental. Discussion In 7.4% of patients, an undiagnosed hereditary genetic predisposition was identified, whether or not related to the clinical presentation, and germline analysis impacted oncological management for only 6.3% of the cohort. This low percentage should be weighed against the burden of systematic genetic consultation and urgent circuits. Information or training tools to form oncologists to the prescription of germline genetic analyses should be explored, as well as information supports and patient preferences

    Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes With a HSP70 Peptide Aptamer.

    Full text link
    BACKGROUND: Exosomes, via heat shock protein 70 (HSP70) expressed in their membrane, are able to interact with the toll-like receptor 2 (TLR2) on myeloid-derived suppressive cells (MDSCs), thereby activating them. METHODS: We analyzed exosomes from mouse (C57Bl/6) and breast, lung, and ovarian cancer patient samples and cultured cancer cells with different approaches, including nanoparticle tracking analysis, biolayer interferometry, FACS, and electron microscopy. Data were analyzed with the Student's t and Mann-Whitney tests. All statistical tests were two-sided. RESULTS: We showed that the A8 peptide aptamer binds to the extracellular domain of membrane HSP70 and used the aptamer to capture HSP70 exosomes from cancer patient samples. The number of HSP70 exosomes was higher in cancer patients than in healthy donors (mean, ng/mL ± SD = 3.5 ± 1.7 vs 0.17 ± 0.11, respectively, P = .004). Accordingly, all cancer cell lines examined abundantly released HSP70 exosomes, whereas "normal" cells did not. HSP70 had higher affinity for A8 than for TLR2; thus, A8 blocked HSP70/TLR2 association and the ability of tumor-derived exosomes to activate MDSCs. Treatment of tumor-bearing C57Bl/6 mice with A8 induced a decrease in the number of MDSCs in the spleen and inhibited tumor progression (n = 6 mice per group). Chemotherapeutic agents such as cisplatin or 5FU increase the amount of HSP70 exosomes, favoring the activation of MDSCs and hampering the development of an antitumor immune response. In contrast, this MDSC activation was not observed if cisplatin or 5FU was combined with A8. As a result, the antitumor effect of the drugs was strongly potentiated. CONCLUSIONS: A8 might be useful for quantifying tumor-derived exosomes and for cancer therapy through MDSC inhibition

    Acute Kidney Injury Risk Assessment: Differences and Similarities Between Resource-Limited and Resource-Rich Countries

    No full text
    The incidence of acute kidney injury (AKI) among acutely ill patients is reportedly very high and has vexing consequences on patient outcomes and health care systems. The risks and impact of AKI differ between developed and developing countries. Among developing countries, AKI occurs in young individuals with no or limited comorbidities, and is usually due to environmental causes, including infectious diseases. Although several risk factors have been identified for AKI in different settings, there is limited information on how risk assessment can be used at population and patient levels to improve care in patients with AKI, particularly in developing countries where significant health disparities may exist. The Acute Disease Quality Initiative consensus conference work group addressed the issue of identifying risk factors for AKI and provided recommendations for developing individualized risk stratification strategies to improve care. We proposed a 5-dimension, evidence-based categorization of AKI risk that allows clinicians and investigators to study, define, and implement individualized risk assessment tools for the region or country where they practice. These dimensions include environmental, socioeconomic and cultural factors, processes of care, exposures, and the inherent risks of AKI. We provide examples of these risks and describe approaches for risk assessments in the developing world. We anticipate that these recommendations will be useful for health care providers to plan and execute interventions to limit the impact of AKI on society and each individual patient. Using a modified Delphi process, this group reached consensus regarding several aspects of AKI risk stratification

    Further delineation of the NTHL1 associated syndrome: A report from the French Oncogenetic Consortium

    No full text
    International audienceAbstract Biallelic pathogenic variants in the NTHL1 (Nth like DNA glycosylase 1) gene cause a recently identified autosomal recessive hereditary cancer syndrome predisposing to adenomatous polyposis and colorectal cancer. Half of biallelic carriers also display multiple colonic or extra‐colonic primary tumors, mainly breast, endometrium, urothelium, and brain tumors. Published data designate NTHL1 as an important contributor to hereditary cancers but also underline the scarcity of available informations. Thanks to the French oncogenetic consortium (Groupe GĂ©nĂ©tique et Cancer), we collected NTHL1 variants from 7765 patients attending for hereditary colorectal cancer or polyposis (n = 3936) or other hereditary cancers (n = 3829). Here, we describe 10 patients with pathogenic biallelic NTHL1 germline variants, that is, the second largest NTHL1 series. All carriers were from the “colorectal cancer or polyposis” series. All nine biallelic carriers who underwent colonoscopy presented adenomatous polyps. For digestive cancers, average age at diagnosis was 56.2 and we reported colorectal, duodenal, caecal, and pancreatic cancers. Extra‐digestive malignancies included sarcoma, basal cell carcinoma, breast cancer, urothelial carcinoma, and melanoma. Although tumor risks remain to be precisely defined, these novel data support NTHL1 inclusion in diagnostic panel testing. Colonic surveillance should be conducted based on MUTYH recommendations while extra‐colonic surveillance has to be defined
    corecore