24 research outputs found

    HFE-Related Hemochromatosis: The Haptoglobin 2-2 Type Has a Significant but Limited Influence on Phenotypic Expression of the Predominant p.C282Y Homozygous Genotype

    Get PDF
    Phenotypic expression of the common p.C282Y/p.C282Y HFE-related hemochromatosis genotype is heterogeneous and depends on a complex interplay of genetic and non-genetic factors. Haptoglobin has a crucial role in free hemoglobin iron recovery, and exists as three major types: Hp1-1, Hp2-1 and Hp2-2. Hp2-2 favors endocytosis of hemoglobin iron in monocytes/macrophages, resulting in partial iron retention and increased intracellular ferritin levels. This situation is generally not expected to severely affect iron homeostasis, but was found to correlate with elevated serum iron indices in healthy men. Whether the Hp2-2 genotype acts as a modifier in HFE-related hemochromatosis is unclear. In this study we investigated influence of Hp2-2 and of potential confounders on the iron indices of 351 p.C282Y homozygous patients. We conclude that there is a cause-and-effect relationship between the Hp2-2 genotype and increased iron indices in p.C282Y homozygous patients. The Hp2-2 effect is, however, limited and only apparent in males

    A novel hypomorphic splice variant in EIF2B5 gene is associated with mild ovarioleukodystrophy

    Get PDF
    Objective: To identify the genetic cause in an adult ovarioleukodystrophy patient resistant to diagnosis. Methods: We applied whole-exome sequencing (WES) to a vanishing white matter disease patient associated with premature ovarian failure at 26 years of age. We functionally tested an intronic variant by RT-PCR on patient's peripheral blood mononuclear cells (PBMC) and by minigene splicing assay. Results: WES analysis identified two novel variants in the EIF2B5 gene: c.725A > G (p.Tyr242Cys) and an intronic noncanonical mutation (c.1156 + 13G>A). This intronic mutation resulted into generation of various isoforms both in patient's PBMC and in the minigene splicing assay, showing that ~20% residual wild-type isoform is still expressed by the intronic-mutated allele alone, concordant with an hypomorphic effect of this variant. Conclusion: We report two novel variants in EIF2B5, one of them a noncanonical intronic splice variant, located at a +13 intronic position. This position is mutated only in 0.05% of ClinVar intronic mutations described so far. Furthermore, we illustrate how minigene splicing assay may be advantageous when validating splice-altering variants, in this case highlighting the coexistence of wild-type and mutated forms, probably explaining this patient's milder, late-onset phenotype

    Structure-Function Analysis of the Human Ferroportin Iron Exporter (SLC40A1): Effect of Hemochromatosis Type 4 Disease Mutations and Identification of Critical Residues

    No full text
    International audienceFerroportin (SLC40A1) is the only known iron exporter in mammals and is considered a key coordinator of the iron balance between intracellular and systemic iron homeostasis. However, the structural organization of ferroportin in the lipid bilayer remains controversial and very little is known about the mechanism underlying iron egress. In the present study, we have developed an approach based on comparative modeling, which has led to the construction of a model of the threedimensional (3D) structure of ferroportin by homology to the crystal structure of a Major Facilitator Superfamily member (EmrD). This model predicts atomic details for the organization of ferroportin transmembrane helices and is in agreement with our current understanding of the ferroportin function and its interaction with hepcidin. Using in vitro experiments, we demonstrate that this model can be used to identify novel critical amino acids. In particular, we show that the tryptophan residue 42 (p.Trp42), which is localized within the extracellular end of the ferroportin pore, is likely involved in both the iron export function and in the mechanism of inhibition by hepcidin. Thus, our 3D model provides a new perspective for understanding the molecular basis of ferroportin functions and dysfunctions

    Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A

    No full text
    International audienceFerroportin 1 (FPN1) is a major facilitator superfamily transporter that is essential for proper maintenance of human iron homeostasis at the systemic and cellular level. FPN1 dysfunction leads to the progressive accumulation of iron in reticuloendothelial cells, causing hemochromatosis type 4A (or ferroportin disease), an autosomal dominant disorder that displays large phenotypic heterogeneity. Although crystal structures have unveiled the outward- and inward-facing conformations of the bacterial homolog Bdellovibrio bacteriovorus Fpn (or Bd2019) and calcium has recently been identified as an essential cofactor, our molecular understanding of the iron transport mechanism remains incomplete. Here, we used a combination of molecular modeling, molecular dynamics simulations, and Ala site-directed mutagenesis, followed by complementary in vitro functional analyses, to explore the structural architecture of the human FPN1 intracellular gate. We reveal an interdomain network that involves 5 key amino acids and is likely very important for stability of the iron exporter facing the extracellular milieu. We also identify inter- and intradomain interactions that rely on the 2 Asp84 and Asn174 critical residues and do not exist in the bacterial homolog. These interactions are thought to play an important role in the modulation of conformational changes during the transport cycle. We interpret these results in the context of hemochromatosis type 4A, reinforcing the idea that different categories of loss-of-function mutations exist. Our findings provide an unprecedented view of the human FPN1 outward-facing structure and the particular function of the so-called "gating residues" in the mechanism of iron export.-Guellec, J., Elbahnsi, A., Le Tertre, M., Uguen, K., Gourlaouen, I., Férec, C., Ka, C., Callebaut, I., Le Gac, G. Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A

    Homozygous deletion of HFE is the common cause of hemochromatosis in Sardinia

    No full text
    doi:10.3324/haematol.2009.016816 Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors ' final approval; the final version of the manuscript will then appe-ar in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process. Haematologica (pISSN: 0390-6078, eISSN: 1592-8721, NLM ID: 0417435, www.haemato-logica.org) publishes peer-reviewed papers across all areas of experimental and clinical hematology. The journal is owned by the Ferrata Storti Foundation, a non-profit organiza-tion, and serves the scientific community with strict adherence to the principles of open access publishing (www.doaj.org). In addition, the journal makes every paper published immediately available in PubMed Central (PMC), the US National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature. Official Organ of the European Hematology Association Published by the Ferrata Storti Foundation, Pavia, Italy www.haematologica.or

    A common SNP near BMP2 is associated with severity of the iron burden in HFE p.C282Y homozygous patients: a follow-up study.

    No full text
    International audienceBACKGROUND AND OBJECTIVES: It is now generally admitted that penetrance of the common HFE p.C282Y/p.C282Y genotype is incomplete, and identification of modifier genes is the concern of a growing number of research projects. We recently identified a significant association between pretherapeutic serum ferritin level and the common rs235756 single nucleotide polymorphism (SNP) of the BMP2 gene region. Our results further suggested an interactive effect between the BMP2 rs235756 SNP and the rs16827043 SNP in HJV, with a small additive effect of the rs4901474 SNP in BMP4. DESIGN AND METHODS: The present study has been designed as a replication study in an independent cohort of 450 HFE p.C282Y homozygous patients from a nearby French region (Brittany). Information on individual alcohol consumption and amount of iron removed by phlebotomy being available for a substantial part of this cohort, additional analyses were conducted. RESULTS: Only the use of the Amount of Iron Removed by phlebotomy (AIR) as marker of iron burden has provided positive results. Indeed, a significant association was detected between rs235756 and AIR adjusted for sex and age, with a mean AIR increasing with the number of BMP2 T alleles in the genotype groups. The effect of rs235657 was not strong enough to detect effects of gene combinations. Still, the trend in two-locus genotype risks involving BMP2 and HJV for AIR was concordant with the specific interactive effect described in the initial study. INTERPRETATION AND CONCLUSIONS: Although we failed to replicate results of the initial study, we argue that, altogether, our results help to consider genes involved in the regulation of hepcidin synthesis as potential modifiers of the p.C282Y/pC282Y genotype expression and especially BMP2

    Prevalence of HFE-related haemochromatosis and secondary causes of hyperferritinaemia and their association with iron overload in 1059 French patients treated by venesection

    No full text
    International audienceBackground: Venesection is the key therapy in haemochromatosis, but it remains controversial in hyperferritinaemia with moderate iron accumulation. There is substantial evidence that the results of HFE genotyping are routinely misinterpreted, while elevated serum ferritin has become more frequent in recent years in white adult populations following the increase of obesity and metabolic traits. Aims: To examine the reasons for prescribing venesection in 1,059 French patients during the period 2012-2015, determine the true prevalence of HFE-related haemochromatosis, and compare iron overload profiles between haemochromatosis and non-haemochromatosis patients. Results: Only 258 of the 488 patients referred for haemochromatosis had the p.[Cys282Tyr];[Cys282Tyr] disease causative genotype (adjusted prevalence: 24.4%). Of the 801 remaining patients, 112 (14.0%) had the debated p.[Cys282Tyr];[His63Asp] compound heterozygote genotype, 643 (80.3%) had central obesity, 475 (59.3%) had metabolic syndrome (MetS) and 93 (11.6%) were heavy drinkers. The non-haemochromatosis patients started therapeutic venesection 9 years later than haemochromatosis patients (P < 0.001). Despite similar serum ferritin values, they had lower transferrin saturation (41.1% vs 74.3%; P < 0.001), lower amounts of iron removed by venesection (1.7 vs 3.2 g; P < 0.001) and lower hepatic iron concentrations (107 vs 237 pmol/g; P < 0.001). Conclusions: Haemochromatosis is over-diagnosed and is no longer the main reason for therapeutic venesection in France. Obesity and other metabolic abnormalities are frequently associated with mild elevation of serum ferritin, the MetS is confirmed in similar to 50% of treated patients. There is a minimal relationship between serum ferritin and iron overload in non-p.Cys282Tyr homozygotes. Our observations raise questions about venesection indications in non-haemochromatosis patients
    corecore