2,324 research outputs found

    Attraction between like-charged colloidal particles induced by a surface a density - functional analysis

    Full text link
    We show that the first non-linear correction to the linearised Poisson-Boltzman n (or DLVO) theory of effective pair interactions between charge-stabilised, co lloidal particles near a charged wall leads to an attractive component of entro pic origin. The position and depth of the potential compare favourably with rec ent experimental measurementsComment: 12 pages including 2 figures. submitted to physical review letter

    Lack of involvement of lipocortin 1 in dexamethasone suppression of IL-1 release

    Get PDF
    The annexin lipocortin 1 is reported to mediate some anti-inflammatory effects of glucocorticoids, but the mechanisms of this mediation are incompletely understood. The involvement of lipocortin 1 in glucocorticoid inhibition of monocyte interleukin 1β (IL-1β) release has been investigated. Treatment of peripheral blood monocytes with 2 μg/ml lipopolysaccharide potently increased IL–1β release (p = 0.001) and dexamethasone (10−7 M) significantly reduced both resting and stimulated IL-1β release (p = 0.009). A neutralizing monoclonal antibody to lipocortin 1 (0.5–50.0 μg/ml) was unable to inhibit this effect and recombinant lipocortin 1 (2 × 10−6 M) and 188aa lipocortin 1 fragment (10−8−10−6 M) had no effect. It is concluded that lipocortin 1 is not involved in the inhibition of monocyte IL-1β release by glucocorticoids

    Characterizing the far-infrared properties of distant X-ray detected AGNs: evidence for evolution in the infrared–X-ray luminosity ratio

    Get PDF
    We investigate the far-infrared (FIR) properties of X-ray sources detected in the Chandra Deep Field-South (CDF-S) survey using the ultradeep 70 and 24 μm Spitzer observations taken in this field. Since only 30 (i.e. ≈ 10 per cent) of the 266 X-ray sources in the region of the 70 μm observations are detected at 70 μm, we rely on stacking analyses of the 70 μm data to characterize the average 70 μm properties of the X-ray sources as a function of redshift, X-ray luminosity and X-ray absorption. Using Spitzer-IRS data of the Swift-Burst Alert Telescope (BAT) sample of z ≈ 0 active galactic nuclei (AGNs), we show that the 70/24 μm flux ratio can distinguish between AGN-dominated and starburst-dominated systems out to z ≈ 1.5 . Among the X-ray sources detected at 70 μm, we note a large scatter in the observed 70/24 μm flux ratios, spanning almost a factor of 10 at similar redshifts, irrespective of object classification, suggesting a range of AGN:starburst ratios. From stacking analyses we find that the average observed 70/24 μm flux ratios of AGNs out to an average redshift of 1.5 are similar to z ≈ 0 AGNs with similar X-ray luminosities (L_X = 10^(42-44) erg s^(−1)) and absorbing column densities (N_H ≤ 10^(23) cm^(−2)) . Furthermore, both high-redshift and z ≈ 0 AGNs follow the same tendency towards warmer 70/24 μm colours with increasing X-ray luminosity (LX). From analyses of the Swift-BAT sample of z ≈ 0 AGNs, we note that the 70 μm flux can be used to determine the IR (8–1000 μm) luminosities of high-redshift AGNs. We use this information to show that L_X = 10^(42-43) erg s^(−1) AGNs at high redshifts (z = 1–2) have IR to X-ray luminosity ratios (L_(IR)/L_X) that are, on average, 4.7^(+10.2)_(−2.0) and 12.7+7.1−2.6 times higher than AGNs with similar X-ray luminosities at z = 0.5–1 and ≈0, respectively. By comparison, we find that the L_(IR)/L_X ratios of L_X= 10^(43-44) erg s^(−1) AGNs remain largely unchanged across this same redshift interval. We explore the consequences that these results may have on the identification of distant, potentially Compton-thick AGNs using L_(IR)/L_X ratios. In addition, we discuss possible scenarios for the observed increase in the L_(IR)/L_X ratio with redshift, including changes in the dust covering factor of AGNs and/or the star formation rates of their host galaxies. Finally, we show how deep observations to be undertaken by the Herschel Space Observatory will enable us to discriminate between these proposed scenarios and also identify Compton-thick AGNs at high redshifts

    Anatomical and molecular properties of long descending propriospinal neurons in mice

    Get PDF
    Long descending propriospinal neurons (LDPNs) are interneurons that form direct connections between cervical and lumbar spinal circuits. LDPNs are involved in interlimb coordination and are important mediators of functional recovery after spinal cord injury (SCI). Much of what we know about LDPNs comes from a range of species, however, the increased use of transgenic mouse lines to better define neuronal populations calls for a more complete characterisation of LDPNs in mice. In this study, we examined the cell body location, inhibitory neurotransmitter phenotype, developmental provenance, morphology and synaptic inputs of mouse LDPNs throughout the cervical and upper thoracic spinal cord. LDPNs were retrogradely labelled from the lumbar spinal cord to map cell body locations throughout the cervical and upper thoracic segments. Ipsilateral LDPNs were distributed throughout the dorsal, intermediate and ventral grey matter as well as the lateral spinal nucleus and lateral cervical nucleus. In contrast, contralateral LDPNs were more densely concentrated in the ventromedial grey matter. Retrograde labelling in GlyT2GFP and GAD67GFP mice showed the majority of inhibitory LDPNs project either ipsilaterally or adjacent to the midline. Additionally, we used several transgenic mouse lines to define the developmental provenance of LDPNs and found that V2b positive neurons form a subset of ipsilaterally projecting LDPNs. Finally, a population of Neurobiotin (NB) labelled LDPNs were assessed in detail to examine morphology and plot the spatial distribution of contacts from a variety of neurochemically distinct axon terminals. These results provide important baseline data in mice for future work on their role in locomotion and recovery from SCI

    Effect of expertise on diagnosis accuracy, non-technical skills and thought processes during simulated high-fidelity anaesthetist scenarios

    Get PDF
    Background The expert performance approach can be used to examine expertise during representative field-based tasks, while collecting process-tracing measures such as think-aloud verbal reports. Collecting think-aloud verbal reports provides an insight into the cognitive mechanisms that support performance during tasks. Method We examined the thought processes and performance of anaesthetists during simulated environments. Verbal reports of thinking and the anaesthetists’ non-technical skills (ANTS) were recorded to examine cognitive processes, non-technical behaviours and diagnosis accuracy during fully immersive, high-fidelity medical scenarios. Skilled (n=6) and less skilled (n=9) anaesthetists were instructed to respond to medical scenarios experienced in theatre. Results Skilled participants demonstrated higher diagnosis accuracy and ANTS scores compared to less skilled participants. Furthermore, skilled participants engaged in deeper thinking and verbalised more evaluation, prediction and deep planning statements. Conclusions The ability to employ an effective cognitive processing strategy, more efficient non-technical behaviours and superior diagnosis is associated with superior performance in skilled participants

    Experimental investigation of a bistable system in the presence of noise and delay

    Get PDF
    We experimentally analyze the behavior of a non-Markovian bistable system with noise, using a vertical cavity surface emitting laser with time-delayed optoelectronic feedback. The effects of the delayed feedback are observed in the probability distribution of the residence times of the two orthogonal polarization states, and in the polarization-resolved power spectrum. They agree well with recent theoretical predictions based on a two-state model with transition rates depending on an earlier state of the system. We also observe experimentally and explain theoretically that the residence time probability distribution deviates from exponential decay for residence times close to (and smaller than) the delay time.Peer ReviewedPostprint (published version

    Anomalous interactions in confined charge-stabilized colloid

    Full text link
    Charge-stabilized colloidal spheres dispersed in weak 1:1 electrolytes are supposed to repel each other. Consequently, experimental evidence for anomalous long-ranged like-charged attractions induced by geometric confinement inspired a burst of activity. This has largely subsided because of nagging doubts regarding the experiments' reliability and interpretation. We describe a new class of thermodynamically self-consistent colloidal interaction measurements that confirm the appearance of pairwise attractions among colloidal spheres confined by one or two bounding walls. In addition to supporting previous claims for this as-yet unexplained effect, these measurements also cast new light on its mechanism.Comment: 8 pages, 5 figures, RevTeX4. Conference proceedings for CODEF-04, Colloidal Dispersions in External Fields, March 29 - April 1, 200

    Variable Hard X-ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    Full text link
    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole with mass ~10^6 M_sun. The presence of an AGN in a low-mass starburst galaxy marks a new environment for active galactic nuclei (AGNs), with implications for the processes by which "seed" black holes may form in the early Universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.Comment: 7 pages, 4 figures, 2 tables; accepted for publication in Ap

    Effect of many-body interactions on the solid-liquid phase-behavior of charge-stabilized colloidal suspensions

    Full text link
    The solid-liquid phase-diagram of charge-stabilized colloidal suspensions is calculated using a technique that combines a continuous Poisson-Boltzmann description for the microscopic electrolyte ions with a molecular-dynamics simulation for the macroionic colloidal spheres. While correlations between the microions are neglected in this approach, many-body interactions between the colloids are fully included. The solid-liquid transition is determined at a high colloid volume fraction where many-body interactions are expected to be strong. With a view to the Derjaguin-Landau-Verwey-Overbeek theory predicting that colloids interact via Yukawa pair-potentials, we compare our results with the phase diagram of a simple Yukawa liquid. Good agreement is found at high salt conditions, while at low ionic strength considerable deviations are observed. By calculating effective colloid-colloid pair-interactions it is demonstrated that these differences are due to many-body interactions. We suggest a density-dependent pair-potential in the form of a truncated Yukawa potential, and show that it offers a considerably improved description of the solid-liquid phase-behavior of concentrated colloidal suspensions
    • …
    corecore