239 research outputs found
EmoçÔes, âstressâ, ansiedade e âcoping": estudo qualitativo com treinadores de nĂvel internacional
A influĂȘncia dos fatores e processos psicolĂłgicos no desempenho desportivo dos atletas estĂĄ, de uma forma geral, amplamente demonstrada; todavia, poucas investigaçÔes procuraram estudar esta relação nos treinadores. Neste sentido, empregando uma entrevista semi-estruturada, a presente investigação procurou, junto de seis treinadores de elite com idades compreendidas entre os 55 e os 63 anos (M = 59 ± 3,03) de diversas modalidades, identificar as caracterĂsticas/competĂȘncias psicolĂłgicas mais importantes para o sucesso desportivo, as principais fontes de âstressâ e ansiedade experienciadas e as estratĂ©gias de âcopingâ a que recorriam em situaçÔes estressantes e/ou problemĂĄticas, adicionalmente, pretendeu explorar o papel de outras emoçÔes no seu desempenho. Os resultados revelaram que: 1) a motivação era uma das competĂȘncias/caracterĂsticas psicolĂłgicas percepcionadas pelos treinadores como mais importantes para o sucesso; 2) as principais fontes de âstressâ estavam relacionadas com preocupaçÔes com o desempenho dos atletas, sendo comuns a diferentes modalidades; 3) os treinadores recorriam a diversas estratĂ©gias de âcopingâ em simultĂąneo, geralmente adaptativas; e 4) para alĂ©m da ansiedade, outras emoçÔes, positivas e negativas, pareciam influenciar o desempenho dos treinadores.Fundação para a CiĂȘncia e Tecnologia (FCT
Atom gratings produced by large angle atom beam splitters
An asymptotic theory of atom scattering by large amplitude periodic
potentials is developed in the Raman-Nath approximation. The atom grating
profile arising after scattering is evaluated in the Fresnel zone for
triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It
is shown that, owing to the scattering in these potentials, two
\QTR{em}{groups} of momentum states are produced rather than two distinct
momentum components. The corresponding spatial density profile is calculated
and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure
The Empirical Mass-Luminosity Relation for Low Mass Stars
This work is devoted to improving empirical mass-luminosity relations and
mass-metallicity-luminosity relation for low mass stars. For these stars,
observational data in the mass-luminosity plane or the
mass-metallicity-luminosity space subject to non-negligible errors in all
coordinates with different dimensions. Thus a reasonable weight assigning
scheme is needed for obtaining more reliable results. Such a scheme is
developed, with which each data point can have its own due contribution.
Previous studies have shown that there exists a plateau feature in the
mass-luminosity relation. Taking into account the constraints from the
observational luminosity function, we find by fitting the observational data
using our weight assigning scheme that the plateau spans from 0.28 to 0.50
solar mass. Three-piecewise continuous improved mass-luminosity relations in K,
J, H and V bands, respectively, are obtained. The visual
mass-metallicity-luminosity relation is also improved based on our K band
mass-luminosity relation and the available observational metallicity data.Comment: 8 pages, 2 figures. Accepted for publication in Astrophysics & Space
Scienc
Coping with the effects of fear of failure in young elite athletes
Coping with stress is an important element in effective functioning at the elite level in sports, and fear of failure (FF) is an example of a stressor that athletes experience. Three issues underpin the present preliminary study. First, the prevalence of problems attributed to FF in achievement settings. Second, sport is a popular and significant achievement domain for children and adolescents. Third, there is a lack of research on FF in sport among this population. Therefore, the objectives of the study were to examine the effects of FF on young athletes and to find out their coping responses to the effects of FF. Interviews were conducted individually with nine young elite athÂletes (5 males, 4 females; ages 14-17 years). It was inferred from the data that FF affected the athletes' well-being, interpersonal behavior, sport performance, and schoolwork. The athletes employed a combination of problem-focused, emotion-foÂcused, and avoidance-focused coping strategies, with avoidance strategies being the most frequently reported
Neutrino Interferometry In Curved Spacetime
Gravitational lensing introduces the possibility of multiple (macroscopic)
paths from an astrophysical neutrino source to a detector. Such a multiplicity
of paths can allow for quantum mechanical interference to take place that is
qualitatively different to neutrino oscillations in flat space. After an
illustrative example clarifying some under-appreciated subtleties of the phase
calculation, we derive the form of the quantum mechanical phase for a neutrino
mass eigenstate propagating non-radially through a Schwarzschild metric. We
subsequently determine the form of the interference pattern seen at a detector.
We show that the neutrino signal from a supernova could exhibit the
interference effects we discuss were it lensed by an object in a suitable mass
range. We finally conclude, however, that -- given current neutrino detector
technology -- the probability of such lensing occurring for a
(neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation
-- accepted for publication in Phys.Rev.D. Extra author adde
Reionization by active sources and its effects on the cosmic microwave background
We investigate the possible effects of reionization by active sources on the
cosmic microwave background. We concentrate on the sources themselves as the
origin of reionization, rather than early object formation, introducing an
extra period of heating motivated by the active character of the perturbations.
Using reasonable parameters, this leads to four possibilities depending on the
time and duration of the energy input: delayed last scattering, double last
scattering, shifted last scattering and total reionization. We show that these
possibilities are only very weakly constrained by the limits on spectral
distortions from the COBE FIRAS measurements. We illustrate the effects of
these reionization possibilities on the angular power spectrum of temperature
anisotropies and polarization for simple passive isocurvature models and simple
coherent sources, observing the difference between passive and active models.
Finally, we comment on the implications of this work for more realistic active
sources, such as causal white noise and topological defect models. We show for
these models that non-standard ionization histories can shift the peak in the
CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version
accepted for publication in Phys. Rev.
Red Queen Coevolution on Fitness Landscapes
Species do not merely evolve, they also coevolve with other organisms.
Coevolution is a major force driving interacting species to continuously evolve
ex- ploring their fitness landscapes. Coevolution involves the coupling of
species fit- ness landscapes, linking species genetic changes with their
inter-specific ecological interactions. Here we first introduce the Red Queen
hypothesis of evolution com- menting on some theoretical aspects and empirical
evidences. As an introduction to the fitness landscape concept, we review key
issues on evolution on simple and rugged fitness landscapes. Then we present
key modeling examples of coevolution on different fitness landscapes at
different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and
Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.).
Springer Series in Emergence, Complexity, and Computation, 201
Spinor condensates and light scattering from Bose-Einstein condensates
These notes discuss two aspects of the physics of atomic Bose-Einstein
condensates: optical properties and spinor condensates. The first topic
includes light scattering experiments which probe the excitations of a
condensate in both the free-particle and phonon regime. At higher light
intensity, a new form of superradiance and phase-coherent matter wave
amplification were observed. We also discuss properties of spinor condensates
and describe studies of ground--state spin domain structures and dynamical
studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999
Summer School, Session LXXI
What Drives Fitness Apps Usage? An Empirical Evaluation
Part 3: Creating Value through ApplicationsInternational audienceThe increased health problems associated with lack of physical activity is of great concern around the world. Mobile phone based fitness applications appear to be a cost effective promising solution for this problem. The aim of this study is to develop a research model that can broaden understanding of the factors that influence the user acceptance of mobile fitness apps. Drawing from Unified Theory of Acceptance and Use of Technology (UTAUT) and Elaboration Likelihood Model (ELM), we conceptualize the antecedents and moderating factors of fitness app use. We validate our model using field survey. Implications for research and practice are discussed
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, OâMalley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. âMacrobeâ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes â the dominant life form on the planet, both now and throughout evolutionary history â will transform some of the philosophy of biologyâs standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology â including biofilm formation, chemotaxis, quorum sensing and gene transfer â that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
- âŠ