113 research outputs found

    The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

    Get PDF
    A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC

    Parafoveal OCT Angiography Features in Diabetic Patients without Clinical Diabetic Retinopathy: A Qualitative and Quantitative Analysis

    Get PDF
    Purpose. To evaluate the capacity of OCT angiography (OCTA) for detecting infraclinical lesions in parafoveal capillaries in diabetic patients without diabetic retinopathy (DR). Methods. This prospective observational cross-sectional case-control study analyzed the superficial and deep capillary plexuses (SCP and DCP) on macular OCTA scans (3 × 3 mm) centered on the fovea. We compared 22 diabetic patients (34 eyes included) without DR diagnosis on color fundus photographs, with 22 age- and gender-matched nondiabetic controls (40 eyes included). Qualitative analysis concerned morphological ischemic capillary alterations. Quantitative analysis measured foveal avascular zone (FAZ) size, parafoveal capillary density, and enlargement coefficient of FAZ between SCP and DCP. Results. Neither the qualitative nor quantitative parameters were significantly different between both groups. No microaneurysms or venous tortuosity was observed in any of the analyzed images. On the SCP, the mean FAZ area was 0.322 ± 0.125 mm2 in diabetic patients and 0.285 ± 0.150 mm2 in controls, P=0.31. On the DCP, the mean FAZ area was 0.444 ± 0.153 mm2 in cases and 0.398 ± 0.138 mm2 in controls, P=0.20. Conclusion. OCTA did not detect infraclinical qualitative or quantitative differences in parafoveal capillaries of diabetic patients without DR in comparison with nondiabetic controls

    Chiral and herringbone symmetry breaking in water-surface monolayers

    Get PDF
    We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h

    Building a successful minimally invasive mitral valve repair program before introducing the robotic approach: The Massachusetts General Hospital experience

    Get PDF
    BackgroundPatients with mitral valve prolapse (MVP) requiring surgical repair (MVr) are increasingly operated using minimally invasive strategies. Skill acquisition may be facilitated by a dedicated MVr program. We present here our institutional experience in establishing minimally invasive MVr (starting in 2014), laying the foundation to introduce robotic MVr.MethodsWe reviewed all patients that had undergone MVr for MVP via sternotomy or mini-thoracotomy between January 2013 and December 2020 at our institution. In addition, all cases of robotic MVr between January 2021 and August 2022 were analyzed. Case complexity, repair techniques, and outcomes are presented for the conventional sternotomy, right mini-thoracotomy and robotic approaches. A subgroup analysis comparing only isolated MVr cases via sternotomy vs. right mini-thoracotomy was conducted using propensity score matching.ResultsBetween 2013 and 2020, 799 patients were operated for native MVP at our institution, of which 761 (95.2%) received planned MVr (263 [34.6%] via mini-thoracotomy) and 38 (4.8%) received planned MV replacement. With increasing proportions of minimally invasive procedures (2014: 14.8%, 2020: 46.5%), we observed a continuous growth in overall institutional volume of MVP (n = 69 in 2013; n = 127 in 2020) and markedly improved institutional rates of successful MVr, with 95.4% in 2013 vs. 99.2% in 2020. Over this period, a higher complexity of cases were treated minimally-invasively and increased use of neochord implantation ± limited leaflet resection was observed. Patients operated minimally invasively had longer aortic cross-clamp times (94 vs. 88 min, p = 0.001) but shorter ventilation times (4.4 vs. 4.8 h, p = 0.002) and hospital stays (5 vs. 6 days, p < 0.001) than those operated via sternotomy, with no significant differences in other outcome variables. A total of 16 patients underwent robotically assisted MVr with successful repair in all cases.ConclusionA focused approach towards minimally invasive MVr has transformed the overall MVr strategy (incision; repair techniques) at our institution, leading to a growth in MVr volume and improved repair rates without significant complications. On this foundation, robotic MVr was first introduced at our institution in 2021 with excellent outcomes. This emphasizes the importance of building a competent team to perform these challenging operations, especially during the initial learning curve

    Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability

    Get PDF
    Bacteria possess physicochemical surface properties such as hydrophobicity, Lewis acid/base and charge which are involved in physicochemical interactions between cells and interfaces. Moreover, food matrices are complex and heterogeneous media, with a microstructure depending on interactions between the components in media (van der Waals, electrostatic or structural forces, etc.). Despite the presence of bacteria in fermented products, few works have investigated how bacteria interact with other food components. The objective of the present study was to determine the effects of the surface properties of lactic acid bacteria on the stability of model food emulsions. The bacteria were added to oil/water emulsions stabilized by milk proteins (sodium caseinate, whey proteins concentrate or whey proteins isolate) at different pH (from 3 to 7.5). The effect of bacteria on the emulsions stability depended on the surface properties of strains and also on the characteristics of emulsions. Flocculation and aggregation phenomena were observed in emulsion at pHs for which the bacterial surface charge was opposed to the one of the proteins. The effects of bacteria on the stability of emulsion depended also on the concentration of cations present in media such as Ca2+. These results show that the bacteria through their surface properties could interact with other compounds in matrices, consequently affecting the stability of emulsions. The knowledge and choice of bacteria depending on their surface properties could be one of the important factors to control the stability of matrices such as fermentation media or fermented products.Région Bourgogne, Agence Universitaire de la Francophonie

    Glial Fibrillary Acidic Protein Autoimmunity: A French Cohort Study

    Get PDF
    Background and ObjectivesTo report the clinical, biological, and imaging features and clinical course of a French cohort of patients with glial fibrillary acidic protein (GFAP) autoantibodies.MethodsWe retrospectively included all patients who tested positive for GFAP antibodies in the CSF by immunohistochemistry and confirmed by cell-based assay using cells expressing human GFAPα since 2017 from 2 French referral centers.ResultsWe identified 46 patients with GFAP antibodies. Median age at onset was 43 years, and 65% were men. Infectious prodromal symptoms were found in 82%. Other autoimmune diseases were found in 22% of patients, and coexisting neural autoantibodies in 11%. Tumors were present in 24%, and T-cell dysfunction in 23%. The most frequent presentation was subacute meningoencephalitis (85%), with cerebellar dysfunction in 57% of cases. Other clinical presentations included myelitis (30%) and visual (35%) and peripheral nervous system involvement (24%). MRI showed perivascular radial enhancement in 32%, periventricular T2 hyperintensity in 41%, brainstem involvement in 31%, leptomeningeal enhancement in 26%, and reversible splenial lesions in 4 cases. A total of 33 of 40 patients had a monophasic course, associated with a good outcome at last follow-up (Rankin Score ≤2: 89%), despite a severe clinical presentation. Adult and pediatric features are similar. Thirty-two patients were treated with immunotherapy. A total of 11/22 patients showed negative conversion of GFAP antibodies.DiscussionGFAP autoimmunity is mainly associated with acute/subacute meningoencephalomyelitis with prodromal symptoms, for which tumors and T-cell dysfunction are frequent triggers. The majority of patients followed a monophasic course with a good outcome

    Novel Association of the NOTCH Pathway Regulator MIB1 Gene With the Development of Bicuspid Aortic Valve.

    Get PDF
    IMPORTANCE Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. OBJECTIVE To identify a new gene for nsBAV. DESIGN, SETTING, AND PARTICIPANTS This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. MAIN OUTCOMES AND MEASURES To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. RESULTS A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. CONCLUSIONS AND RELEVANCE This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.This study was supported in part by grants PID2019-104776RB-I00 and CB16/ 11/00399 (Dr de la Pompa) from the Spanish Ministerio de Ciencia e Innovación (MCIN/ AEI/ 10.13039/501100011033/); a grant from Hadassah France Association (Drs Gilon and Tessler); a grant from the Center for Interdisciplinary Data Science Research of the Hebrew University of Jerusalem (Dr Tessler); grant R35 CA220340 from the National Institutes of Health (Dr Blacklow), and grants R21HL150373, R01HL114823 (Dr Body); BSF grants 2013269 and 2017245 (Drs. Sprinzak and Blacklow); a consolidator grant from the European Research Council (Genomia – ERC-COG-2017-771945; Dr Loeys); the European Reference Network on rare multisystemic vascular disorders (VASCERN - project ID: 769036 partly cofunded by the European Union Third Health Programme (Drs Loeys and Verstraeten); funding from the Outreach project (Dutch Heart Foundation; Dr Luyckx); funding from Heart and Stroke Foundation of Canada/Robert M Freedom Chair of Cardiovascular Science (Dr Mital); sample biobanking and sequencing from Canada were supported by grants from the Leducq Foundation Transatlantic Networks of Excellence grant, and the Ted Rogers Centre for Heart Research; ISF grant 1053/12 (Dr Durst); and grant R01HL150401 from National Heart, Lung, and Blood Institute (Dr Muehlschlegel).S

    Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter = 4.0 cm in adults, or a Z-score = 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype
    corecore