36 research outputs found

    Anesthesia for Pediatric Lung Transplantation: Case Presentation and Review of the Literature

    Get PDF
    The first pediatric lung transplant was performed in 1987 at the University of Toronto in a 15-year-old with familial pulmonary fibrosis. Since that time, over 2000 children have received lung transplants worldwide, with an annual number ranging between 99 and 137 over the past decade. For the anesthesiologist charged with managing these rare patients, an understanding of the indications that lead to transplantation, their pathophysiology, and the physiology of the transplanted lungs are critical. To provide a context for the anesthetic management of the child undergoing lung transplantation, we discuss the case of a 2-month-old who underwent bilateral lung transplantation for intractable respiratory failure. Both the unique aspects of this case and pediatric lung transplantation, in general, are presented. Then a review of the literature is discussed

    Results of a Phase 1 Multicentre Investigation of Dexmedetomidine Bolus and Infusion in Corrective Infant Cardiac Surgery

    Get PDF
    BACKGROUND: Dexmedetomidine (DEX) is increasingly used intraoperatively in infants undergoing cardiac surgery. This phase 1 multicentre study sought to: (i) determine the safety of DEX for cardiac surgery with cardiopulmonary bypass; (ii) determine the pharmacokinetics (PK) of DEX; (iii) create a PK model and dosing for steady-state DEX plasma levels; and (iv) validate the PK model and dosing. METHODS: We included 122 neonates and infants (0-180 days) with D-transposition of the great arteries, ventricular septal defect, or tetralogy of Fallot. Dose escalation was used to generate NONMEM® PK modelling, and then validation was performed to achieve low (200-300 pg ml RESULTS: Five of 122 subjects had adverse safety outcomes (4.1%; 95% confidence interval [CI], 1.8-9.2%). Two had junctional rhythm, two had second-/third-degree atrioventricular block, and one had hypotension. Clearance (CL) immediately postoperative and CL on CPB were reduced by approximately 50% and 95%, respectively, compared with pre-CPB CL. DEX clearance after CPB was 1240 ml min CONCLUSIONS: When used with a careful dosing strategy, DEX results in low incidence and severity of adverse safety events in infants undergoing cardiac surgery with cardiopulmonary bypass. This validated PK model should assist clinicians in selecting appropriate dosing. The results of this phase 1 trial provide preliminary data for a phase 3 trial of DEX neuroprotection

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis

    Get PDF
    Introduction Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. Methods We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. Results We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women. Pregnant women with SARS-CoV-2 infection—as compared with uninfected pregnant women—were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12). Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. Conclusions This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis.

    Get PDF
    INTRODUCTION Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. METHODS We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. RESULTS We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women.Pregnant women with SARS-CoV-2 infection-as compared with uninfected pregnant women-were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12).Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. CONCLUSIONS This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol

    Methyldopa blocks MHC class II binding to disease-specific antigens in autoimmune diabetes

    No full text
    Major histocompatibility (MHC) class II molecules are strongly associated with many autoimmune disorders. In type 1 diabetes, the DQ8 molecule is common, confers significant disease risk and is involved in disease pathogenesis. We hypothesized blocking DQ8 antigen presentation will provide a treatment by preventing recognition of self-peptides by pathogenic T-cells. We used the crystal structure of DQ8 to select drug-like small molecules predicted to bind structural pockets in the antigen binding cleft. A number of compounds inhibited DQ8 antigen presentation in vitro with one compound preventing insulin autoantibody production and delaying diabetes onset in an animal model of spontaneous autoimmune diabetes. We discovered an existing drug, methyldopa, blocked DQ8 and treated recent onset type 1 diabetes patients having the DQ8 allele. Methyldopa specifically inhibited DQ8 antigen presentation along with reducing inflammatory T-cell responses toward insulin, highlighting the relevance of blocking disease specific MHC II antigen presentation to treat autoimmunity
    corecore