63 research outputs found

    Asymmetric core combustion in neutron stars and a potential mechanism for gamma ray bursts

    Full text link
    We study the transition of nuclear matter to strange quark matter (SQM) inside neutron stars (NSs). It is shown that the influence of the magnetic field expected to be present in NS interiors has a dramatic effect on the propagation of a laminar deflagration (widely studied so far), generating a strong acceleration of the flame in the polar direction. This results in a strong asymmetry in the geometry of the just formed core of hot SQM which resembles a cylinder orientated in the direction of the magnetic poles of the NS. This geometrical asymmetry gives rise to a bipolar emission of the thermal neutrino-antineutrino pairs produced in the process of SQM formation. The neutrino-antineutrino pairs annihilate into electron-positron pairs just above the polar caps of the NS giving rise to a relativistic fireball, thus providing a suitable form of energy transport and conversion to gamma emission that may be associated to short gamma ray bursts (GRBs).Comment: 2 figure

    Flame fronts in Supernovae Ia and their pulsational stability

    Full text link
    The structure of the deflagration burning front in type Ia supernovae is considered. The parameters of the flame are obtained: its normal velocity and thickness. The results are in good agreement with the previous works of different authors. The problem of pulsation instability of the flame, subject to plane perturbations, is studied. First, with the artificial system with switched-off hydrodynamics the possibility of secondary reactions to stabilize the front is shown. Second, with account of hydrodynamics, realistic EOS and thermal conduction we can obtain pulsations when Zeldovich number was artificially increased. The critical Zeldovich numbers are presented. These results show the stability of the flame in type Ia supernovae against pulsations because its effective Zeldovich number is small.Comment: 12 pages, 11 figure

    Asymmetric Explosions of Thermonuclear Supernovae

    Get PDF
    A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found that a total asymmetry of about 50 % is produced between the polar and equatorial directions for progenitors with a surface magnetic field B ~ 5 x 10^{7} G, and a composition C12 = 0.2 and O16 = 0.8 (in this case, the R-T instability saturates at scales \~ 20 times the width of the flame front). This asymmetry is in good agreement with the inferred asymmetries from spectropolarimetric observations of very young supernova remnants, which have recently revealed intrinsic linear polarization interpreted as evidence of an asymmetric explosion in several objects,such as SN1999by, SN1996X, and SN1997dt. Larger magnetic field strengths will produce even larger asymmetries. We have also found that for lighter progenitors the total asymmetry is larger.Comment: 21 pages, 8 figures, AASTEX macros, Accepted for publication in Monthly Notices of The Royal Astronomical Societ

    Flame front propagation IV: Random Noise and Pole-Dynamics in Unstable Front Propagation II

    Full text link
    The current paper is a corrected version of our previous paper arXiv:adap-org/9608001. Similarly to previous version we investigate the problem of flame propagation. This problem is studied as an example of unstable fronts that wrinkle on many scales. The analytic tool of pole expansion in the complex plane is employed to address the interaction of the unstable growth process with random initial conditions and perturbations. We argue that the effect of random noise is immense and that it can never be neglected in sufficiently large systems. We present simulations that lead to scaling laws for the velocity and acceleration of the front as a function of the system size and the level of noise, and analytic arguments that explain these results in terms of the noisy pole dynamics.This version corrects some very critical errors made in arXiv:adap-org/9608001 and makes more detailed description of excess number of poles in system, number of poles that appear in the system in unit of time, life time of pole. It allows us to understand more correctly dependence of the system parameters on noise than in arXiv:adap-org/9608001Comment: 23 pages, 4 figures,revised, version accepted for publication in journal "Combustion, Explosion and Shock Waves". arXiv admin note: substantial text overlap with arXiv:nlin/0302021, arXiv:adap-org/9608001, arXiv:nlin/030201

    Flame front propagation I: The Geometry of Developing Flame Fronts: Analysis with Pole Decomposition

    Full text link
    The roughening of expanding flame fronts by the accretion of cusp-like singularities is a fascinating example of the interplay between instability, noise and nonlinear dynamics that is reminiscent of self-fractalization in Laplacian growth patterns. The nonlinear integro-differential equation that describes the dynamics of expanding flame fronts is amenable to analytic investigations using pole decomposition. This powerful technique allows the development of a satisfactory understanding of the qualitative and some quantitative aspects of the complex geometry that develops in expanding flame fronts.Comment: 4 pages, 2 figure
    • …
    corecore