139 research outputs found

    The influence of personality and ability on undergraduate teamwork and team performance

    Get PDF
    The ability to work effectively on a team is highly valued by employers, and collaboration among students can lead to intrinsic motivation, increased persistence, and greater transferability of skills. Moreover, innovation often arises from multidisciplinary teamwork. The influence of personality and ability on undergraduate teamwork and performance is not comprehensively understood. An investigation was undertaken to explore correlations between team outcomes, personality measures and ability in an undergraduate population. Team outcomes included various self-, peer- and instructor ratings of skills, performance, and experience. Personality measures and ability involved the Five-Factor Model personality traits and GPA. Personality, GPA, and teamwork survey data, as well as instructor evaluations were collected from upper division team project courses in engineering, business, political science, and industrial design at a large public university. Characteristics of a multidisciplinary student team project were briefly examined. Personality, in terms of extraversion scores, was positively correlated with instructors’ assessment of team performance in terms of oral and written presentation scores, which is consistent with prior research. Other correlations to instructor-, students’ self- and peer-ratings were revealed and merit further study. The findings in this study can be used to understand important influences on successful teamwork, teamwork instruction and intervention and to understand the design of effective curricula in this area moving forward

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Determinants of the Cost-Effectiveness of Intermittent Preventive Treatment for Malaria in Infants and Children

    Get PDF
    BACKGROUND: Trials of intermittent preventive treatment in infants (IPTi) and children (IPTc) have shown promising results in reducing malaria episodes but with varying efficacy and cost-effectiveness. The effects of different intervention and setting characteristics are not well known. We simulate the effects of the different target age groups and delivery channels, seasonal or year-round delivery, transmission intensity, seasonality, proportions of malaria fevers treated and drug characteristics. METHODS: We use a dynamic, individual-based simulation model of Plasmodium falciparum malaria epidemiology, antimalarial drug action and case management to simulate DALYs averted and the cost per DALY averted by IPTi and IPTc. IPT cost components were estimated from economic studies alongside trials. RESULTS: IPTi and IPTc were predicted to be cost-effective in most of the scenarios modelled. The cost-effectiveness is driven by the impact on DALYs, particularly for IPTc, and the low costs, particularly for IPTi which uses the existing delivery strategy, EPI. Cost-effectiveness was predicted to decrease with low transmission, badly timed seasonal delivery in a seasonal setting, short-acting and more expensive drugs, high frequencies of drug resistance and high levels of treatment of malaria fevers. Seasonal delivery was more cost-effective in seasonal settings, and year-round in constant transmission settings. The difference was more pronounced for IPTc than IPTi due to the different proportions of fixed costs and also different assumed drug spacing during the transmission season. The number of DALYs averted was predicted to decrease as a target five-year age-band for IPTc was shifted from children under 5 years into older ages, except at low transmission intensities. CONCLUSIONS: Modelling can extend the information available by predicting impact and cost-effectiveness for scenarios, for outcomes and for multiple strategies where, for practical reasons, trials cann be carried out. Both IPTi and IPTc are generally cost-effective but could be rendered cost-ineffective by characteristics of the setting, drug or implementatio

    Psychological well-being in Europe after the outbreak of war in Ukraine

    Get PDF
    The Russian invasion of Ukraine on February 24, 2022, has had devastating effects on the Ukrainian population and the global economy, environment, and political order. However, little is known about the psychological states surrounding the outbreak of war, particularly the mental well-being of individuals outside Ukraine. Here, we present a longitudinal experience-sampling study of a convenience sample from 17 European countries (total participants = 1,341, total assessments = 44,894, countries with >100 participants = 5) that allows us to track well-being levels across countries during the weeks surrounding the outbreak of war. Our data show a significant decline in well-being on the day of the Russian invasion. Recovery over the following weeks was associated with an individual’s personality but was not statistically significantly associated with their age, gender, subjective social status, and political orientation. In general, well-being was lower on days when the war was more salient on social media. Our results demonstrate the need to consider the psychological implications of the Russo-Ukrainian war next to its humanitarian, economic, and ecological consequences

    A global experience-sampling method study of well-being during times of crisis : The CoCo project

    Get PDF
    We present a global experience-sampling method (ESM) study aimed at describing, predicting, and understanding individual differences in well-being during times of crisis such as the COVID-19 pandemic. This international ESM study is a collaborative effort of over 60 interdisciplinary researchers from around the world in the “Coping with Corona” (CoCo) project. The study comprises trait-, state-, and daily-level data of 7490 participants from over 20 countries (total ESM measurements = 207,263; total daily measurements = 73,295) collected between October 2021 and August 2022. We provide a brief overview of the theoretical background and aims of the study, present the applied methods (including a description of the study design, data collection procedures, data cleaning, and final sample), and discuss exemplary research questions to which these data can be applied. We end by inviting collaborations on the CoCo dataset

    Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi

    Get PDF
    The response of Alliumcepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R′) and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R′ was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars

    Genome-Wide Functional Profiling Reveals Genes Required for Tolerance to Benzene Metabolites in Yeast

    Get PDF
    Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease
    corecore