2,021 research outputs found

    On the Cause of Supra-Arcade Downflows in Solar Flares

    Get PDF
    A model of supra-arcade downflows (SADs), dark low density regions also known as tadpoles that propagate sunward during solar flares, is presented. It is argued that the regions of low density are flow channels carved by sunward-directed outflow jets from reconnection. The solar corona is stratified, so the flare site is populated by a lower density plasma than that in the underlying arcade. As the jets penetrate the arcade, they carve out regions of depleted plasma density which appear as SADs. The present interpretation differs from previous models in that reconnection is localized in space but not in time. Reconnection is continuous in time to explain why SADs are not filled in from behind as they would if they were caused by isolated descending flux tubes or the wakes behind them due to temporally bursty reconnection. Reconnection is localized in space because outflow jets in standard two-dimensional reconnection models expand in the normal (inflow) direction with distance from the reconnection site, which would not produce thin SADs as seen in observations. On the contrary, outflow jets in spatially localized three-dimensional reconnection with an out-of-plane (guide) magnetic field expand primarily in the out-of-plane direction and remain collimated in the normal direction, which is consistent with observed SADs being thin. Two-dimensional proof-of-principle simulations of reconnection with an out-of-plane (guide) magnetic field confirm the creation of SAD-like depletion regions and the necessity of density stratification. Three-dimensional simulations confirm that localized reconnection remains collimated.Comment: 16 pages, 5 figures, accepted to Astrophysical Journal Letters in August, 2013. This version is the accepted versio

    The extension and exploitation of the inventory and order based production control system archetype from 1982 to 2015

    Get PDF
    In 1994, through classic control theory, John, Naim and Towill developed the ‘Automatic Pipeline, Inventory and Order-based Production Control System’ (APIOBPCS) which extended the original IOBPCS archetype developed by Towill in 1982 ─ well-recognised as a base framework for a production planning and control system. Due to the prevalence of the two original models in the last three decades in the academic and industrial communities, this paper aims to systematically review how the IOBPCS archetypes have been adopted, exploited and adapted to study the dynamics of individual production planning and control systems and whole supply chains. Using various databases such as Scopus, Web of Science, Google Scholar (111 papers), we found that the IOBPCS archetypes have been studied regarding the a) modification of four inherent policies related to forecasting, inventory, lead-time and pipeline to create a ‘family’ of models, b) adoption of the IOBPCS ‘family’ to reduce supply chain dynamics, and in particular bullwhip, c) extension of the IOBPCS family to represent different supply chain scenarios such as order-book based production control and closed-loop processes. Simulation is the most popular method adopted by researchers and the number of works based on discrete time based methods is greater than those utilising continuous time approaches. Most studies are conceptual with limited practical applications described. Future research needs to focus on cost, flexibility and sustainability in the context of supply chain dynamics and, although there are a few existing studies, more analytical approaches are required to gain robust insights into the influence of nonlinear elements on supply chain behaviour. Also, empirical exploitation of the existing models is recommended

    Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations

    Get PDF
    The most stringent test of theoretical models of the first-order Fermi mechanism at collisionless astrophysical shocks is a comparison of the theoretical predictions with observational data on particle populations. Such comparisons have yielded good agreement between observations at the quasi-parallel portion of the Earth's bow shock and three theoretical approaches, including Monte Carlo kinetic simulations. This paper extends such model testing to the realm of oblique interplanetary shocks: here observations of proton and alpha particle distributions made by the SWICS ion mass spectrometer on Ulysses at nearby interplanetary shocks are compared with test particle Monte Carlo simulation predictions of accelerated populations. The plasma parameters used in the simulation are obtained from measurements of solar wind particles and the magnetic field upstream of individual shocks. Good agreement between downstream spectral measurements and the simulation predictions are obtained for two shocks by allowing the the ratio of the mean-free scattering length to the ionic gyroradius, to vary in an optimization of the fit to the data. Generally small values of this ratio are obtained, corresponding to the case of strong scattering. The acceleration process appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical Journal, February 20, 199

    Peer observation of teaching: A decoupled process

    Get PDF
    This article details the findings of research into the academic teaching staff experience of peer observation of their teaching practice. Peer observation is commonly used as a tool to enhance a teacher’s continuing professional development. Research participants acknowledged its ability to help develop their teaching practice, but they also reported that it could operate superficially as a tick box exercise, that its outcomes were frequently decoupled from formal staff development processes, and that its purpose and usefulness therefore seemed unclear. This article argues that the presence of decoupling reinforces the need to account for structural factors that can interact with peer observation of teaching to ensure it is a meaningful exercise for all teaching staff. It concludes that the published academic literature is perhaps guilty of overplaying the role of personal choice and individual tutor characteristics when addressing the complex issue that is staff disengagement with peer observation of teaching

    Stochastic multi-scale finite element based reliability analysis for laminated composite structures

    Get PDF
    This paper proposes a novel multi-scale approach for the reliability analysis of composite structures that accounts for both microscopic and macroscopic uncertainties, such as constituent material properties and ply angle. The stochastic structural responses, which establish the relationship between structural responses and random variables, are achieved using a stochastic multi-scale finite element method, which integrates computational homogenisation with the stochastic finite element method. This is further combined with the first- and second-order reliability methods to create a unique reliability analysis framework. To assess this approach, the deterministic computational homogenisation method is combined with the Monte Carlo method as an alternative reliability method. Numerical examples are used to demonstrate the capability of the proposed method in measuring the safety of composite structures. The paper shows that it provides estimates very close to those from Monte Carlo method, but is significantly more efficient in terms of computational time. It is advocated that this new method can be a fundamental element in the development of stochastic multi-scale design methods for composite structures

    Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation

    Full text link
    We describe a method to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are produced by a radio source occulted by a moving flux rope depending on its orientation. These curves are consistent with the Helios observations, providing evidence for the flux-rope geometry of CMEs. Many background radio sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope that the magnetic field orientation and helicity of the flux rope can be determined 2-3 days before it reaches Earth, which is of crucial importance for space weather forecasting. An FR calculation based on global magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows that FR mapping can also resolve a CME geometry curved back to the Sun. We discuss implementation of the method using data from the Mileura Widefield Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.
    • 

    corecore