128 research outputs found

    Self-pulsing and chaos in the asymmetrically driven dissipative photonic Bose-Hubbard dimer: A bifurcation analysis

    Get PDF
    We perform a systematic study of the temporal dynamics emerging in the asymmetrically driven dissipative Bose-Hubbard dimer model. This model successfully describes the nonlinear dynamics of photonic diatomic molecules in linearly coupled Kerr resonators coherently excited by a single laser beam. Such temporal dynamics may include self-pulsing oscillations, period doubled oscillatory states, chaotic dynamics, and spikes. We have thoroughly characterized such dynamical states, their origin, and their regions of stability by applying bifurcation analysis and dynamical system theory. This approach has allowed us to identify and classify the instabilities, which are responsible for the appearance of different types of temporal dynamics

    Modeling of quasi-phase-matched cavity enhanced second harmonic generation

    Full text link
    We propose a mean-field model to describe second harmonic generation in a resonator made of a material with zincblende crystalline structure. The model is obtained through an averaging of the propagation equations and boundary conditions. It considers the phase-mismatched terms, which act as an effective Kerr effect. We analyze the impact of the different terms on the steady state solutions, highlighting the competition between nonlinearities

    Generation of coherent supercontinuum in a-Si :H waveguides : experiment and modeling based on measured dispersion profile

    Get PDF
    Hydrogenated amorphous silicon (a:Si-H) has recently been recognized as a highly nonlinear CMOS compatible photonic platform. We experimentally demonstrate the generation of a supercontinuum (SC) spanning over 500 nm in a-Si:H photonic wire waveguide at telecommunication wavelengths using femtosecond input pulse with energy lower than 5 pJ. Numerical modeling of pulse propagation in the waveguide, based on the experimentally characterized dispersion profile, shows that the supercontinuum is the result of soliton fission and dispersive wave generation. It is demonstrated that the SC is highly coherent and that the waveguides do not suffer from material degradation under femtosecond pulse illumination. Finally, a direct comparison of SC generation in c-Si and a-Si:H waveguides confirms the higher performances of a-Si:H over c-Si for broadband low power SC generation at telecommunication wavelengths.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Mode-locking induced by coherent driving in fiber lasers

    Get PDF
    Mode-locking is a broad concept that encompasses different processes enabling short optical pulse formation in lasers. It typically requires an intracavity mechanism that discriminates between single and collective mode lasing, which can be complex and sometimes adds noise. Moreover, known mode-locking schemes do not guarantee phase stability of the carrier wave. Here, we theoretically propose that injecting a detuned signal seamlessly leads to mode-locking in fiber lasers. We show that phase-locked pulses, akin to cavity solitons, exist in a wide range of parameters. In that regime the laser behaves as a passive resonator due to the non-instantaneous gain saturation

    Measuring the nonlinear refractive index of graphene using the optical Kerr effect method

    Get PDF
    © 2016 Optical Society of America.By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third-order nonlinear response of graphene and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, n2 = -1.1 × 10-13 m2/W. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature and to discuss the discrepancies, taking into account parameters such as doping

    Exploring the van der Waals Atom-Surface attraction in the nanometric range

    Get PDF
    The van der Waals atom-surface attraction, scaling as C3 z-3 for z the atom-surface distance, is expected to be valid in the distance range 1-1000 nm, covering 8-10 orders of magnitudes in the interaction energy. A Cs vapour nanocell allows us to analyze the spectroscopic modifications induced by the atom-surface attraction on the 6P3/2->6D5/2 transition. The measured C3 value is found to be independent of the thickness in the explored range 40-130 nm, and is in agreement with an elementary theoretical prediction. We also discuss the specific interest of exploring short distances and large interaction energy.Comment: to appear in Europhysics Letter

    Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths

    Get PDF
    We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W. © 2014 Optical Society of America.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore