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Mode-locking is a broad concept that encompasses different
processes enabling short optical pulse formation in lasers. It
typically requires an intracavity mechanism that discrimi-
nates between single and collective mode lasing, which can
be complex and sometimes adds noise. Moreover, known
mode-locking schemes do not guarantee phase stability of
the carrier wave. Here, we theoretically propose that inject-
ing a detuned signal seamlessly leads to mode-locking in
fiber lasers. We show that phase-locked pulses, akin to cav-
ity solitons, exist in a wide range of parameters. In that
regime the laser behaves as a passive resonator due to the
non-instantaneous gain saturation. © 2022 Optica Publishing
Group

https://doi.org/10.1364/OL.463061

Optical dissipative solitons (DSs) are pulses propagating with-
out distortion in an optical cavity [1]. DSs belong to the wider
class of dissipative localized structures which emerge in differ-
ent fields such as hydrodynamics [2] or plasma physics [3]. DSs
can take many shapes, depending on the parameters of the sys-
tem. We focus on the dissipative counterparts of the well-known
sech-shaped nonlinear Schrödinger soliton, which attracts much
attention in both mode-locked lasers [4] and passive nonlinear
resonators [5–7]. In the latter, they are called cavity solitons
(CSs). The main difference between lasers and passive res-
onators lies in how the energy is provided to the system. In lasers,
the gain is incoherent while in passive resonators energy comes
from an external source. Coherent driving adds a control param-
eter through the cavity detuning, leading to bistability in Kerr
resonators [8], which in turn allows for the formation of coher-
ent solitons on a stable background [9]. In lasers, solitons are
not phase-locked and they are only stable on the condition that
the trivial off solution is stable in-between pulses [10], which
requires active or passive mode-locking mechanisms such as
intracavity modulation [11], saturable absorbers [10], and Kerr
lensing [12], among others [13,14].

Here, we theoretically show that, similarly to passive res-
onators, an injected continuous wave (CW) signal seamlessly
leads to mode-locking in fiber lasers. In connection with our
recent results on soliton formation in active resonators pumped
below the lasing threshold [15], we call them active cavity
solitons (ACSs). ACSs exist in the regime where the saturated

incoherent gain is lower than the intracavity loss. In that con-
figuration, the laser cavity can be treated as a low-loss passive
resonator. ACSs are hence intrinsically linked to CSs. They are
phase-locked to a driving laser which forms a homogeneous
background around the sech-shaped soliton. Phase locking of
laser solitons to a CW driving signal has already been proposed
[16,17], but we demonstrate that the role of an injected source
goes beyond adding coherence. It induces mode-locking in the
absence of standard schemes and the driving frequency can be
harnessed to tune the pulse properties.

The physical system we consider is depicted in Fig. 1. It
consists of a driven fiber resonator incorporating a short erbium-
doped fiber amplifier. Under some conditions, in particular when
the gain dynamics is much slower than the round trip time, the
dimensionless slowly varying electric field envelope E and gain g
can be modeled by the following normalized mean-field model:

∂E(T , τ)
∂T

=

[︃
−1 + g(T) + i(|E(T , τ)|2 − ∆)

− iη
∂2

∂τ2

]︃
E(T , τ) + S,

(1)

dg(T)
dT

= µ[−(1 + ξ⟨|E(T , τ)|2⟩)g(T) + G0], (2)

where T is the slow time scaled with respect to the round trip
time tR; τ is time in a reference frame traveling at the carrier fre-
quency group velocity; ∆ is the normalized phase detuning; S is
the normalized driving; G0 is the ratio between the small-signal
gain and the intrinsic cavity loss; ξ is related to the saturation
power; and µ = αitR/τg where τg=10 ms is the erbium relax-
ation time. The normalized parameters are linked to physical
quantities through the relations: T → αiT/tR where αi is equal
to the total intrinsic cavity losses; ∆ = δ/αi, where δ is the cav-
ity phase detuning in physical units; τ → τ

√︁
2αi/(|β2 |L) where

β2 is the group velocity dispersion; η = sign(β2) and L is the
cavity length; E → E

√︁
γL/αi, where γ is the Kerr nonlinear

coefficient, S2 =
PinγLθ

α3
i

where θ is the power transmission coeffi-
cient of the coupler; ξ = αi/(γLPsat), where Psat is the saturation
power. The average power ⟨|E |2⟩ is evaluated over one round
trip [18,19]: ⟨|E |2⟩ = t−1

c

∫ tc/2

−tc/2
|E |2dτ where tc = tR

√︁
2αi/(|β2 |L)

is the normalized round trip time. In what follows, we focus on
the anomalous regime (η = −1).
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Fig. 1. Schematic representation of a coherently driven active
Kerr fiber resonator. The cavity round trip time (tR) is several orders
of magnitude shorter than the gain lifetime (τg).

The stationary solutions of Eqs. (1) and (2) satisfy the equation

0 =
[︃
−1 +

G0

(1 + ξ⟨|E(τ)|2⟩)
+ i(|E(τ)|2 − ∆)

+i
∂2

∂τ2

]︃
E(τ) + S.

(3)

We readily note that this equation resembles the stationary
Lugiato–Lefever equation (LLE) [8]. The only difference comes
from the additional saturated gain term. In this work, we focus
on the region where the saturated gain is lower than the intra-
cavity loss such that the cavity behaves as a passive resonator
with high effective finesse. For solitons hosted in long passive
resonators, most of the optical energy stored in the resonator
comes from the low-power CW background. We hence start by
making the approximation ⟨|E(τ)|2⟩ ≈ I0, where I0 is the power
of the CW background (see Fig. 1), to identify the regions of
existence of CSs in our system. By introducing the effective
loss αeff = 1 − G0/(1 + ξI0) in Eq. (3), one recovers the LLE
describing a passive resonator with total round trip loss αeff

[8,20]. The oft-used dimensionless driving (Seff) and detuning
(∆eff) parameters of the LLE [21] can be retrieved through the
relations Seff = S/α3/2

eff and ∆eff = ∆/αeff, when αeff>0. For every
set (S,∆, I0), where I0 is a solution of

S2 = I0

[︄(︃
1 −

G0

1 + ξI0

)︃2

+ (∆ − I0)
2

]︄
, (4)

we can calculate the effective LLE parameters (Seff, ∆eff) and
predict the existence of solitons and their stability in our active
system. The region of existence of solitons in the LLE is well-
known [21,22]. In the (Seff,∆eff) space, they are located in the
region bounded by the saddle-node bifurcations SN1 and SN2

[see Fig. 2(a)]. SN1 marks the low CW fold of the LLE and
SN2 is the soliton saddle-node. The latter is well approximated
by the expression SN2 = 2αeff

√
2∆/π [5,23]. The Hopf bifur-

cation (HB) line (calculated numerically), indicates the region
where solitons lose stability and oscillatory behavior, as well as
spatiotemporal dynamics, can be found [24].

As examples of trajectories in the (Seff,∆eff) plane, we use
parameters which correspond to our recent experimental results
[15]. In that configuration, the small-signal gain is lower than
the intracavity loss (no lasing) and (Seff,∆eff) can be defined for
all detunings ∆. We will then generalize the concept by showing
that similar solitons emerge above the lasing threshold. Three
different ∆-parametrized paths, corresponding to different satu-
ration powers are shown in Fig. 2(a). The fixed parameters are
S = 0.4, G0 = 0.92, and tc = 140,000. For large detunings (∆>5,

Fig. 2. (a) Phase-space (Seff,∆eff) of the Lugiato–Lefever equation
(LLE). Soliton existence is delimited by the saddle-node bifurca-
tions SN1 and SN2 (black lines). The Hopf bifurcation (HB) leading
to soliton spatiotemporal oscillations is represented in green. The
rainbow line shows the trajectory of our system for different satu-
ration powers as we change the detuning ∆. (b) Soliton peak power
(blue line) and power of the CW solutions (black) of the active
cavity as a function of ∆. Solid, dashed, and dotted lines corre-
spond to stable, saddle, and Hopf unstable solutions, respectively.
The markers indicate the position of the corresponding crossings
of bifurcation lines in panel (a). The parameters are tc = 140,000,
G0 = 0.92, and S = 0.4.

not shown), the background power I0 is low and all trajectories
(increasing ∆) asymptotically approach Seff = S/(1 − G0), which
corresponds to the normalized driving amplitude of a cavity
with non-saturable gain (ξ = 0). Solitons are predicted to exist
up to ∆ = 30 where Seff = 17.7.

Below ∆ = 5, gain saturation impacts the effective loss and
the trajectory (with decreasing ∆) bends downward. The bend
depends on the saturation power. For ξ = 0.2, the bend is weak.
The system crosses the HB, leading to oscillatory dynamics
and the branch terminates at SN1. For lower saturation powers
(ξ = 3), the downward bend is stronger and the system crosses
the bottom saddle-node SN2, here at Seff = 1.27, showing that a
saddle and stable soliton connect for the second time. The HB
line is crossed twice, indicating a smaller region with oscillatory
states.

To confirm these predictions, we calculate the bifurcation
structure of the full model [Eqs. (1) and (2)]. We use a stan-
dard numerical continuation algorithm (the open distribution
software AUTO-07p [25]). The solutions are calculated in the
domain τ = [0, tc/2] using Neumann boundary conditions. Here,
⟨|E |2⟩ is obtained through an additional integral constraint and
is treated as a free parameter. The stability is calculated by com-
puting the eigenvalues of the Jacobian matrix associated with
Eqs. (1) and (2). The CW and soliton solutions corresponding
to the trajectories of Fig. 2(a) are shown as a function of the
detuning in Fig. 2(b).

For ξ = 0.2, the CW resonance is bistable, albeit on a small
detuning interval and a Turing instability is present at∆ = −1.18.
The soliton branch emerges from the lower CW fold and is
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Fig. 3. (a) Soliton peak power (blue), and power of the homo-
geneous states (black) as a function of the driving amplitude S for
∆ = 1.8. (b) J(S, I0) as a function of the driving S for ∆ = 1.8. (c)
Phase-space (∆, S) of the system showing the soliton (blue) and
homogeneous (black) saddle nodes; HB (green line). The dashed
red line corresponds to the approximation J(S, (S/∆)2) = 0 of SNs.
The parameters are ξ = 7.75, G0 = 0.92, and tc = 140, 000

unstable up until ∆ = 30 (not shown), where the stable soli-
ton branch is created in a saddle-node bifurcation. For ξ = 3.0,
the CW resonance is single-valued for all detunings and does
not undergo modulation instability (MI) [see Fig. 2(b)]. Soliton
states form two branches, one stable and the other unstable, con-
nected on both ends by a saddle-node bifurcation (at ∆ = 0.9 and
∆ = 30, corresponding to the two crossings of SN2). This struc-
ture is commonly called an isola [26]. The stable (top) branch
undergoes two HBs at low detunings. The bifurcation struc-
tures of Fig. 2(b) are in excellent agreement with the predictions
inferred from the effective LLE parameters.

We next calculate the bifurcation structure for a lower satura-
tion power (ξ = 7.75). We focus on the low-detuning region,
where the existence of ACSs is predicted by the condition
Seff>SN2 = 2

√
2∆eff/π, which can be written J(I0,∆)>0, where

J(I0,∆) ≡ S − 2αeff
√

2∆/π. Interestingly, at this saturation level,
there is a small range of detuning where the function J pos-
sesses three zeros. This situation is shown in Fig. 3(a), where
we plot the soliton branches and J(I0, S) as a function of the
driving amplitude S for ∆ = 1.8. At low driving powers, an
isola of ACSs is found, corresponding to the first two zeros of
J(I0, S). The top branch of the isola is stable while the bot-
tom one is unstable (saddle). Increasing S, we find a large
parameter region without any soliton branch. A third saddle
node (SN3

s ) is present around S = 0.8 and a stable and an
unstable branch emerge again in a saddle-node bifurcation.
In this case, they do not form an isola, instead the unsta-
ble branch connects with SNd

cw. This latter structure is very
similar to the one found in passive resonators [9]. This is
because, for high background power, the gain is almost fully sat-
urated and one recovers the bifurcation structure of the intrinsic
cavity.

The two-parameter bifurcation diagram in the (S, ∆)-space
for ξ = 7.75 is shown in Fig. 3(c). We see that the two separate
regions of soliton existence connect through a necking bifurca-
tion around ∆ = 2. Beyond this point, solitons exist for a very
large region of parameters. Importantly, in contrast with pas-
sive resonators [22], the minimum driving amplitude necessary
for soliton formation (S>SN1

s ) is much lower than that for Tur-
ing patterns (arising above the MI or SNu

cw lines). In the region
where the effective loss is low, the CW background power can be
approximated by I0 = S2/∆2, simplifying the evaluation of the
position of SNs. The agreement between the actual SNs and its
approximation is shown in Fig. 3(c). The threshold for soliton
formation is well predicted by the approximated saddle node.

Finally, we look for connections between ACSs and laser
solitons. The latter are the sech-shaped solutions of the mas-
ter equation (ME) [Eq. (3) with S = 0] and they appear above
the lasing threshold G0>1 (see, e.g., Ref. [27]). Because laser
solitons are backgroundless, we reduce the normalized round
trip time to tc = 2000 in what follows, in order to increase the
soliton-to-background energy ratio. Figure 4(a) shows a bifurca-
tion diagram as a function ofG0 for ξ = 7.75,∆ = 3, and S = 0.4.
The CW solutions are stable until GH

0 , where the amplification
exactly compensates the intrinsic cavity losses (αeff = 0). At this
point, there is a HB [28], and modulated (in the slow time) solu-
tions emerge. Further analysis of modulated solutions is beyond
the scope of the present Letter. In the region 1<G0<G

H
0 , the

saturated gain is lower than the intracavity loss, which prevents
lasing. This effect is commonly called injection locking and
has been intensely studied in the CW regime [29,30]. In this
region, the effective LLE parameters predict the existence of
ACSs. Using these predictions as initial guesses, we compute
the soliton solutions as a function of G0 for a fixed detuning
and driving amplitude. The results are shown in Fig. 4(a). ACSs
form two branches connected at their extremes by SNa

s and SNb
s .

The bottom branch is always unstable, while the upper one is
stable up to GH

0 . When the detuning is small, as in Fig. 4(a), the
region where stable ACSs can be found is the same as that of
stable CW solutions because the gain saturation is mostly set by
the CW background. For G0>G

H
0 , the background oscillates as

discussed above, and oscillatory ACSs may be found. The two
ACS solutions found at G0 = GH

0 correspond to the well-known
analytical solutions of Eq. (3) for αeff = 0 [31,32]. They read as

ψ±(τ) = ψ0

[︃
1 +

2sinh2β

1 ± cosh(β)cosh(Bτ)

]︃
, (5)

withψ0 = (∆/(1 + 2cosh2β))1/2 and B = (2∆/(1 + 2cosh2β))1/2sinh β,
where β is a solution of the equation S = 2cosh2β

[︁
∆/(1 + 2cosh2β)

]︁3/2.
These solutions are strongly dependent on the detuning. When

the detuning is increased, the soliton peak power increases and
the CW background power decreases. Here, ψ− corresponds
to the stable soliton with the maximum peak power that can
be excited in our cavity for a given detuning. In Fig. 4(b), we
show the evolution of the existence region of ACSs, bound by
SNa

s and ψ−, as we change the detuning. We also show the
ME (laser) soliton solutions. At large detunings, ψ− and laser
solitons asymptotically merge as the CW background of the for-
mer tends toward zero. This connection may highlight the main
mechanism behind the concept of soliton injection locking. The
sech-shaped solutions of the ME are phase invariant while theψ−

has a fixed phase relation to the driving laser. Interestingly, there
is a very broad region of existence of ACSs beyond these two
well-known solutions. When the detuning is large, ACSs are
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Fig. 4. (a) Soliton peak power (blue line) and CW background
power (black line) as function of G0 for tc = 2000, S = 0.4, ∆ = 3.0,
and ξ = 7.75. Blue dots correspond to ψ±. (b) Phase diagram in the
(G0,∆)-space showing SNa

s (black line), SNb
s (orange line), and ψ±

(blue line). The red line corresponds to the nonlinear phase accu-
mulated by the ME soliton. The dashed line at G0 = 1 corresponds
to the lasing threshold. Stable solitons exist in the gray area.

well approximated by the expression EACS ≈
√

2∆sech
(︂√
∆τ

)︂
[21]. By changing the detuning, one can tune both the duration
and the peak power of the solitons. For fixed cavity parameters
and driving power, ACSs can be shorter and with higher peak
power as compared with the corresponding laser soliton. Injec-
tion locking hence goes beyond fixing the phase of solitons in
lasers. It induces the formation of ultra-stable solitons, with an
amplitude and duration which can be externally controlled. This
mode-locking process has the important advantage that it does
not require an additional element such as a saturable absorber
[16]. The stability of the system is guaranteed because the gain
saturation is larger than the intracavity loss. Conversely, in a
laser without injection, the saturated gain is equal to the intra-
cavity loss and an additional mechanism is required to ensure the
stability of the pulse in the presence of noise. Lastly, we recall
that coherent driving extends the existence of solitons to regions
where laser solitons do not exist, as evidenced in Fig. 4(b) by
the large section of stable soliton formation that extends below
G0 = 1 [15].

In conclusion, we showed that mode-locking can be obtained
through coherent injection in fiber lasers. Stable solitons (ACSs)
exist in a wide region of parameters, which extends both below
and above the lasing threshold. We highlighted their connection
with both solitons of passive resonators and lasers, hinting that
ACSs may provide the missing link between the two. In future
work, we plan to investigate ACS formation in the presence of
faster gain dynamics, such as semiconductor optical amplifiers,
to bridge the gap with solitons predicted in driven quantum
cascade lasers [33]. Furthermore, the impact of higher-order
effects, such as gain dispersion [34] or the Raman effect [35]
that may affect soliton formation, especially when the injected
signal is strongly detuned from resonance, will be studied.
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