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ABSTRACT

We perform a systematic study of the temporal dynamics emerging in the asymmetrically driven dissipative Bose–Hubbard dimer model. This
model successfully describes the nonlinear dynamics of photonic diatomic molecules in linearly coupled Kerr resonators coherently excited
by a single laser beam. Such temporal dynamics may include self-pulsing oscillations, period doubled oscillatory states, chaotic dynamics, and
spikes. We have thoroughly characterized such dynamical states, their origin, and their regions of stability by applying bifurcation analysis
and dynamical system theory. This approach has allowed us to identify and classify the instabilities, which are responsible for the appearance
of different types of temporal dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088597

Self-sustained oscillations are common in nature and may emerge
in a plethora of different systems in various scientific domains.
By changing some of its parameters, a given system may undergo
a number of instabilities where the oscillatory behavior can
increase in complexity, eventually leading to chaotic dynamics.
Of particular interest are nonlinear optical cavities in which
these complex dynamical behaviors may arise. Applying dynam-
ical systems theory, we characterize such dynamical regimes in
the context of asymmetrically driven dissipative Bose–Hubbard
dimers that can be realized with coupled Kerr resonators or cir-
cuit QED. Advances in these systems have a broad spectrum of
applications in science and technology, which range from opti-
cally carried microwave signal generators for sensing and com-
munication to spectroscopy, all-optical information processing,
or quantum simulation.

I. INTRODUCTION

The emergence of self-sustained oscillations is commonly
encountered in a variety of different fields ranging from chemistry

and biology to physics and engineering.1,2 Some examples include
the Belousov–Zhabotinsky reaction,3,4 pulsation in Cepheid variable
stars,2 or the oscillatory biochemical dynamics responsible for the
cell division cycle.5 In all these systems, the self-pulsing behavior
emerges when varying a given parameter beyond a critical value,
where time translation symmetry is broken. This oscillatory insta-
bility is known as a Hopf bifurcation6,7 and is key to understanding
these dynamical phenomena. The self-sustained oscillations can
evolve into much more complex dynamics. One example is chaos,8

which is present in different natural systems, including weather and
climate, fluid turbulent flow,9 and chemical reactions,10 to cite a few.

Rich temporal dynamics, such as self-pulsing,11–17 period-
doubling,18 and chaos,19 may also appear in optical systems.
Recently, different works have focused on the dynamics of two cou-
pled Kerr resonators. This system is commonly known as driven
dissipative photonic Bose–Hubbard dimer (PBHD), in analogy with
the open quantum boson system.20 It has been recently exploited
for optical frequency combs,21–23 microwave signal generation,24–26

or quantum-limited measurements.27

Dissipative Bose–Hubbard dimers can be symmetrically (or
anti-symmetrically) driven by equally exciting both coupled bosonic
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modes or be asymmetrically driven. In most experiments, dissi-
pative dimers are asymmetrically driven by exciting only one of
the two bosonic modes,21,25–32 thus requiring less critical beam
alignment33 or avoiding precise control of the relative phase between
the coherent excitations. Self-pulsing oscillations have been the-
oretically predicted to occur in asymmetrically driven PBHDs15,24

and were recently demonstrated with coupled microcavities25 and
fiber resonators.26 In this latter work, we showed an excellent agree-
ment between the experiments and the theoretical predictions from
the canonical Bose–Hubbard dimer model. Still, coupled resonators
may exhibit much richer dynamics ranging from chaos to spiking
dynamics. These dynamics have been shown for two or more cou-
pled cavities by direct numerical integration of the model.15 Period
doubling cascade to chaotic behavior and similar complex dynam-
ics have been analyzed theoretically by bifurcation analysis but this
work was restricted to symmetrically driven dimers.34,35 However,
the presence (symmetric case) or absence (asymmetric case) of a
phase space mirror symmetry leads to important modifications of
the phase space dynamics and bifurcation structure of the systems.

In this paper, following a bifurcation theory approach to
dynamical systems, we present in a didactic manner a methodi-
cal study of the dynamics, stability, and bifurcation structure of
asymmetrically driven dissipative PBHDs. The paper is organized
as follows. In Sec. II, we introduce the driven dissipative PBHD
model, and we describe some of its characteristics, the 4D dynam-
ical system associated with it, and the methodological approach that
we will follow. Section III focuses on the steady states of the sys-
tem, analyzing their linear stability and steady bifurcations for two
coupling regimes. After that, in Sec. IV, we perform a detailed bifur-
cation analysis of the previous coupling regimes, and we characterize
the different dynamical scenarios. The origin of such dynamics is
related to the presence of Hopf and homoclinic bifurcations. Later
(see Sec. V), we study two homoclinic orbits of different types and
present their main features. Section VI is devoted to elucidating the
origin of the temporal chaos found in the system. Finally, we discuss
our results and draw our conclusions in Sec. VII.

II. THE ASYMMETRICALLY DRIVEN DISSIPATIVE

PHOTONIC BOSE–HUBBARD DIMER MODEL

Let us assume two coupled identical resonators, asymmetri-
cally driven via the excitation of only one of the two resonators.
The dynamics of such PBHD can be described by two coupled
one-dimensional normalized Lugiato–Lefever equations26

dψ1

dt
= [−1 + i(|ψ1|2 −1)]ψ1 + iCψ2 + S,

dψ2

dt
= [−1 + i(|ψ2|2 −1)]ψ2 + iCψ1.

(1)

When considering coupled Kerr ring resonators, the normalization
is as follows. The normalized time is t = t′κ/TR, where t′ is the labo-
ratory time, TR is the round-trip time, and κ is the cavity loss coeffi-
cient when uncoupled. The detuning from the closest (single cavity)
resonances is 1 = δ/κ = (m2π − ϕ)/κ , where ϕ is the round-trip
linear phase shift and m is an integer number. C =

√
θ12/κ , where

θ12 is the transmission coefficient of the coupler between the cavities.
Finally, ψj = Aj

√
γ L/κ (j = 1, 2) and S = i

√

Ppγ Lθp/κ3, where Aj

are the field amplitudes normalized such that the intracavity pow-
ers (expressed in watts) are given by |Aj|2 = Pj. Pp is the driving
power, θp is the transmission coefficient of the input coupler, γ is
the nonlinear parameter of the waveguide and L is the length of the
resonators.

To study this system, we apply two different procedures:
the direct numerical integration of Eq. (1), using a Runge–
Kutta–Fehlberg algorithm, and the numerical path-continuation36,37

of the different states of the system using the open-source software
continuation package AUTO-07p.38 This last approach allows us to
characterize the bifurcation structure and stability of the different
static and periodic dynamical states as a function of the parameters
of the system. For the periodic states, Floquet analysis is applied.39

To perform numerical parameter continuation, it is convenient
to recast the complex dynamical system (1) into the 4D system,

du1

dt
= −u1 − (u2

1 + v2
1 −1)v1 − Cv2 + S,

dv1

dt
= −v1 + (u2

1 + v2
1 −1)u1 + Cu2,

du2

dt
= −u2 − (u2

2 + v2
2 −1)v2 − Cv1,

dv2

dt
= −v2 + (u2

2 + v2
2 −1)u2 + Cu1,

(2)

where ψj = uj + ivj for j = 1, 2. As control parameters, we consider
the pump field S, the coupling constant C, and the phase detuning
1.

This system supports self-pulsing dynamics, i.e., periodic oscil-
lations in time, as schematically shown in Fig. 1(b). Through the
modification of suitable parameters, these oscillations can suffer dif-
ferent transitions, leading to more complex dynamics. One example
of such complexity, corresponding to chaos, is depicted in Fig. 1(c).
In what follows, we will unveil the features of these states and the
transition that they may encounter.

III. STEADY STATES, LINEAR STABILITY, AND THEIR

PHASE DIAGRAM

The steady states of the system correspond to the fixed points
or equilibria ψe = (ψ e

1 ,ψ e
2) = (ue

1, v
e
1, u

e
2, v

e
2) of Eq. (1), such that

dψj/dt = 0. They are solution of the algebraic system

[−1 + i(|ψ1|2 −1)]ψ1 + iCψ2 + S,

[−1 + i(|ψ2|2 −1)]ψ2 + iCψ1 = 0,
(3)

which leads to

|ψ1|2 + (|ψ1|2 −1)
2|ψ1|2 − C2|ψ2|2 − S2 + 2CSv2 = 0,

|ψ2|2 + (|ψ2|2 −1)
2|ψ2|2 − C2|ψ1|2 = 0.

(4)

The linear stability of these points is obtained from the local dynam-
ics of (2) around ψe, which is solely determined by the eigenvalues
λ of the Jacobian J of the system at that point. The complicated
form of Eq. (4) prevents the possibility of extracting an analytical
expression of the eigenvalues of the system. However, the equilibria
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FIG. 1. (a) Schematic view of an asymmetrically driven dissipative PBHD. C rep-
resents the coupling between cavities and S the driving field. (b) Temporal traces
of the cavity powers |ψ1,2|2 in a self-pulsing regime. (c) Same as in (b) but in a
chaotic dynamics regime.

and their stability can be easily computed numerically through the
path-continuation algorithm.36,37

When two cavities are coupled, each resonance splits into two
peaks. These peaks correspond to the excitation of the hybridized
modes, often called the antibonding-like (AB) (1 < 0) and the
bonding-like (B) (1 > 0) modes of the photonic dimer.26 The AB
and B resonances are marked in Figs. 2(i) and 2(vi). The detun-
ing separation between them is equal to 2C and can, thus, be freely
adjusted through the cavity coupling strength. Owing to the asym-
metric driving, the two resonances can be excited when scanning the
detuning. In stark contrast, at low power, a symmetric driving can
only excite the linear symmetric resonance.

In this study, we consider two main dynamical regimes cor-
responding to the weakly coupled scenario (C = 1.5) for which the
splitting is only slightly larger than the resonance width, and the
strongly coupled scenario (C = 5), showing a much larger peak
separation. Hereafter, we refer to them as WC and SC regimes,
respectively. The coupling constant that we consider in the WC
regime is similar to the experimental value of our previous work,26

while the coupling in the SC regime can typically be achieved in inte-
grated photonic dimers or circuit QED. Note that in the latter case,
while the encountered dynamics look similar, they are much richer
and the bifurcation diagram is more complex. In what follows, we
study these two regimes separately. Their steady-state bifurcation
structure is summarized in the diagrams plotted in Fig. 2.

A. Steady states in the weakly coupled regime

Figure 2(a) shows the steady-state phase diagram in the (1, S)-
parameter space for C = 1.5. Slices of such diagram, for increasing
values of S, are depicted in Figs. 2(i)–2(v) where the normalized
powers |ψ1,2|2 are plotted against 1. The linear stability of these

states is marked using solid (dashed) lines for stable (unstable)
equilibria, and only steady-state bifurcations are labeled.

The two resonances partially overlap in the WC regime as
can be seen for S = 1 [see Fig. 2(i)] for which the system is still
close to the linear regime. At this driving level, the resonances
are only slightly asymmetric, a single equilibrium exists for each
given value of 1 and it is linearly stable. Note that, in the whole
region of detuning, |ψ1(1)| 6= |ψ2(1)| except in some particular
points where the curves intersect. This is a feature induced by
the asymmetric driving and the weak coupling. In the symmetric
case, naturally, the power in each ring is equal (|ψ1|2 = |ψ2|2), due
to the mirror invariance. Hence, asymmetric states (i.e., |ψ1(1)|
6= |ψ2(1)|) could only appear through a symmetry breaking pitch-
fork bifurcation,35 as recently experimentally demonstrated with
photonic crystal nanocavities.33

Increasing S [see Fig. 2(ii) for S = 2], the asymmetry between
the resonances increases, yielding a larger right resonance to the
detriment of the left one. The right resonance undergoes a cusp or
hysteresis bifurcation C1, where a pair of folds, or turning points,
are created, leading to the tilted shape.39 These folds correspond to
saddle-node bifurcations that we label SNl,r

1 . At these bifurcations,
a stable node equilibrium and an unstable saddle collide and dis-
appear. This transition leads to the coexistence of three different
equilibria ψα,β ,γ

e , where ψα
e and ψγ

e are stable nodes, whereas ψβ
e

is a saddle.39 The separation in 1 between SNl
1 and SNr

1 defines the
coexistence region CR1 (see light orange area).

Further increasing S, both resonances tilt to the right due to the
effect of the nonlinearity and two new cusp bifurcations occur [see
Figs. 2(a) and 2(iii) for S = 3]: C2 on the right resonance, and C3 on
the left one. In C2, SNl,r

2 are created. This pair of bifurcations leads to
the equilibria ψ δ

e and ψ ε
e (see close-up view), which are both unsta-

ble and coexist in CR2. C3 creates SNl,r
3 , and the two new equilibria

ψµ
e and ψν

e associated with the left resonance appear. Between SNl,r
3 ,

the bistability region CR3 is created.
In Fig. 2(iv), we plot the bifurcation diagram for S = 4. For this

value, the tilting of the resonance is much more prominent, and
the bistability interval between ψα

e and ψγ
e has increased consid-

erably. For increasing values of S, the separation between the pairs
SNl,r

1 , SNl,r
2 , and SNl,r

3 increases [see Fig. 2(a)], and a multi-coexistence

region appears between SNl
1 and SNr

3 that we label MC1−3. An exam-
ple of this situation is depicted in Fig. 2(v) for S = 7. We can see
how the overlapping between both resonances leads to tristability,40

a regime that is absent in the symmetrically driven scenario.35

B. Steady states in the strongly coupled regime

Let us now focus on a scenario with a higher coupling and fix
C = 5. Figure 2(b) shows the phase diagram for that coupling, and
Figs. 2(vi)–2(x) show the bifurcation diagrams for some relevant
values of S. In the linear regime, the two resonances are now well
separated. At S = 1, they are still almost symmetric [see Fig. 2(vi)].

Increasing S, the system encounters C1 and C3 almost simulta-
neously, where the pairs SNl,r

1 and SNl,r
3 , together with the equilibria

ψα,...,ε
e are created as seen in Fig. 2(b). These bifurcations define the

coexistence regions CR1 and CR3. An example of this configura-
tion is plotted in Fig. 2(vii) for S = 3, where different equilibria are
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FIG. 2. Steady-state phase diagrams in the weakly and strongly coupled regimes. (a) shows the (1, S)-phase diagram forC = 1.5. The bifurcation diagrams shown in panels
(i)–(iv) correspond to slices of constant S [see dashed horizontal lines in (a)]. They represent the powers |ψ1|2 (blue) and |ψ2|2 (red) as a function of1. From top to bottom,
the values are S = 1, 2, 3, 4, and 7. (b) shows the (1, S)-phase diagram for C = 5. Panels (v)–(viii) are slices of panel (b) for the constant values S = 1, 3, 4, 6, and 9 (from
top to bottom). Solid and dashed lines represent stable and unstable equilibria (ψ i

e), respectively. In (a) and (b), different coexistence regions (CRj ) and multi-coexistence

regions (MCj ) are depicted as well as the static bifurcations of the equilibria: saddle-node SN
l,r
i and cusp Ci .

depicted. For this value of S, the resonance already tilts slightly to
the right.

The system undergoes an interesting modification for S = 4
as shown in Fig. 2(viii). For this driving value, the right resonance
enlarges due to its merging with an isola (not shown here). The

merging occurs through a necking bifurcation,41 similarly to the one
illustrated in our previous work.26

Moving up in Fig. 2(b), C2 occurs and SNl,r
2 are created.

After this point, the configuration is like the one depicted in
Fig. 2(ix) for S = 6. For this value of S, SNl

1 and SNr
1 are
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far apart, and the right resonance extends to larger values
of1.

For S = 9 [see Fig. 2(x)], the left resonance has grown signif-
icantly as SNr

3 overpasses SNl
1 and SNl

2. At this stage, a tristable
regime appears. Tristability persists for even larger values of S, where
an effective single resonance can emerge similarly to the case shown
in Fig. 2(v). We can identify two main regions of multi-coexistence
that are labeled MC1,2 and MC1−3.

IV. DYNAMICAL REGIMES AND BIFURCATION

STRUCTURE

In Sec. III, we focused on the steady-state equilibria and their
steady bifurcations. As previously stated, self-pulsing oscillations
and chaos may emerge in the system [see Figs. 1(b) and 1(c)]. In this
section, we expand the previous analysis by studying the dynami-
cal behavior of the system and present a systematic analysis of the
bifurcation structure associated with such states in the WC and SC
regimes.

A. Dynamics in the weakly coupled regime

The phase diagram shown at the top of Fig. 3 summarizes
the main dynamical regimes and bifurcation lines of the system for
C = 1.5. To understand such a diagram, we slice it as shown by the
horizontal and vertical dashed lines. Each of these lines corresponds
to one of the bifurcation diagrams shown below. The slices with con-
stant S are plotted in Figs. 3(i)–3(iii), whereas those with constant1
are depicted in Figs. 3(iv)–3(vi).

Figure 3(i) shows a close-up view of Fig. 2(ii) around the bista-
bility region between ψα

e and ψγ
e for S = 2. Upon increase of S, the

Hopf bifurcation (H) line plotted in Fig. 3(a) is crossed, and the
system enters a self-pulsing regime (see red shadowed region) char-
acterized by single-period oscillations like those shown in Fig. 1(b).
An example in this configuration is plotted in Fig. 3(ii) for S = 2.5,
where H is crossed at two points Ha and Hb. The periodic oscilla-
tions emerge supercritically from Ha and with small amplitude from
the left. The maximum and minimum of the oscillation are repre-
sented using red solid lines. Increasing 1, the oscillation amplitude
grows until suddenly it dies out at Hb on the right. This dramatic
change of the oscillation amplitude in phase space is called canard
explosion,42 and is related to type-II excitability.43–45

For S = 3.5, the situation is shown in Fig. 3(iii). For this value,
the equilibria ψ δ

e , ψ ε
e , and ψµ

e , ψν
e , coexist. Furthermore, periodic

oscillations persist. On the left, they still emerge from Ha. On the
right, however, they die in a homoclinic (Hom) bifurcation,7,46 while
only steady states persist for larger values of 1. In the gray region
shown in Fig. 3(a), just after crossing the Hom line, oscillatory states
are absent.

The homoclinic bifurcations are global bifurcations related
to the collision of a limit cycle (i.e., a periodic orbit 0) with an
equilibrium, and are characterized by the divergence of the cycle’s
period.46 At the bifurcation point, the limit cycle 0 becomes a
homoclinic orbit γ , i.e., a trajectory in the phase space which is bi-
asymptotic to the equilibrium. This bifurcation is associated with
type-I excitability.43

In the phase diagram of Fig. 3(a), the Hom bifurcation corre-
sponds to the black solid line. To track numerically this line in the
(1, S)-parameter space, we have used the homoclinic continuation
HOMCONT extension of AUTO-07p.47 We will focus our attention
on this type of bifurcations in Sec. V.

We can also analyze the (1, S)-phase diagram considering
slices of constant 1. The resulting bifurcation diagrams are shown
in Figs. 3(iv)–3(vi), where |ψ1|2 is plotted as a function of S. In
Fig. 3(iv) [1 = 2], bistability exists between SNl

3 and SNr
3, and the

limit cycle 0 emerges and dies at Ha and Hb, respectively. For this
slice, bistability exists between ψ ε

e and ψν
e .

Increasing 1 [see Fig. 3(v) for 1 = 3], the bistability interval
is now bound by Hb and SNr

3. 0 increases drastically its amplitude
and undergoes several secondary bifurcations such as saddle-node
bifurcation of periodic orbits (SNP), also known as fold of cycles,
and period-doubling bifurcations (PD).39,48 For clarity, we do not
plot these bifurcation lines in the phase diagram of Fig. 2(a). The
presence of a PD may suggest the existence of chaotic dynamics
emerging from a period-doubling cascade.8 We will analyze the
chaotic dynamics of this system in Sec. VI.

In Fig. 3(vi) [1 = 4], we plot the bifurcation diagram after
the occurrence of C2 and C1. The bistability between Hb and SNr

3

reduces drastically (see close-up view), and the pair of bifurcations
SNl,r

2 and SNl,r
1 appear. Between the last two bifurcations, a new bista-

bility range emerges, where ψα
e and ψγ

e coexist. This slice cuts Hom
into three different points that we label Homa,b,c, respectively. Peri-
odic oscillations exist between Homa and Homb, and between Homc

and Hb.
The region in-between the H and Hom lines in the (1, S)-

parameter space [see the red shadowed area in Fig. 3(a)] is the
dynamical region of the system where self-pulsing and other dynam-
ical states (e.g., chaos) may emerge.

The H and Hom bifurcations arise from a pair of codimension-
two Takens–Bodganov (TB) bifurcations,6,39 which occur at SNr

2 and
SNl

3. For the range of parameters considered here, we only observe
TB1 [see a close-up view in Fig. 3(a)]. At this bifurcation, the lin-
earized dynamics of the system has two zero eigenvalues λ1,2 = 0
(with algebraic multiplicity 2); for this reason, it is also known as
a double zero bifurcation.6 The periodic oscillations arise from this
point with an infinite period, which becomes finite as H separates
from Hom.

B. Dynamics in the strongly coupled regime

Let us now analyze the bifurcation structure of the system in
the SC regime. The (1, S)-phase diagram plotted in Fig. 4(a) sum-
marizes the main dynamical regions of the system for C = 5. One
of the main differences is the presence of two distinct, but con-
nected, single-period oscillatory regimes (see red shadowed regions
bounded by H1 and H2), which were fused for smaller values of C
[see phase diagram in Fig. 3(a)]. The steady-state bifurcations (i.e.,
the saddle-nodes) are the same as those already plotted in Fig. 2(b).
In addition to the two Hopf bifurcations H1 and H2, two SNP1,7,
several period-doubling bifurcations PD1−3, and two homoclinic
bifurcations Hom1,2 are drawn.

To understand this diagram, we take several slices at con-
stant S. The corresponding bifurcation diagrams are shown in
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FIG. 3. (a) Phase diagram in the (1, S)-parameter space for C = 1.5 showing the main dynamical regions and bifurcations of the system: saddle-node of the steady state

SN
l,r
i , cusp Ci , Hopf H

a,b, saddle-node of periodic oscillatory states SNP, homoclinic Homa,b, and Takens–Bogdanov TBj . The red shadowed region corresponds to self-pulsing
dynamics. The vertical and horizontal dashed lines correspond to the bifurcation diagrams shown in panels (i)–(iii) for constant S (= 2, 2.5, and 3.5), and panels (iv)–(vi) for
constant1 (= 2, 3, and 4). Stable and unstable equilibria (ψ i

e) are plotted with solid and dashed lines, respectively. The red lines represent the maxima and minima of the
periodic oscillations.

Figs. 4(i)–4(v). Let us first analyze the bifurcation structure and
dynamics around the right nonlinear resonance emerging from C1.
The modification of the dynamical scenario around this resonance
is depicted in Figs. 4(i)–4(iv).

The diagram shown in Fig. 4(i) [S = 4.5] intersects H2 at two
points, labeled Ha,b

2 , from where periodic oscillations arise. Due to
the complexity of this scenario, we have used different colors for
each of the limit cycles. In red, we plot the maximum and minimum

of the oscillation arising from Ha
2 and in orange the one emerg-

ing from Hb
2. The linear stability of these limit cycles is depicted

with solid lines for stable states and dashed lines for the unsta-
ble ones. The limit cycle arising from Ha

2, hereafter 0a, undergoes
a pair of secondary SNP1,2. For simplicity, we only plot SNP1 in
Fig. 4(a). Increasing 1, 0a encounters the homoclinic bifurcation
Homa

1 where it is destroyed. The limit cycle originating from Hb
2,

however, quickly undergoes a PD1 bifurcation when decreasing 1.
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FIG. 4. Bifurcation structure for C = 5. (a) shows the phase diagram in the (1, S)-parameter space, which illustrates the different dynamical regions and main bifurcations

of the system: saddle-node of the steady-state SN
l,r
i , Hopf H

a,b
1,2, period-doubling PD

a,b
i , saddle-node of periodic oscillatory states SNPi , and homoclinic Hom

a,b
1,2. The horizontal

dashed lines correspond to the bifurcation diagrams shown below, where |ψ1|2 is plotted as a function of1 for S = 4.5 (i), 5 (ii), 5.5 (iii), 6 (iv), and 8 (v). The vertical dashed
line corresponds to the bifurcation diagram shown in Fig. 8(a). In diagrams (i)–(v), solid (dashed) lines represent stable (unstable) equilibria (ψ i

e) and limit cycles (0i ).

We label this oscillatory state 0b. Eventually, the extrema of 0b

develop a spiral structure which collapses to the Homb
1 (see close-

up view). This spiral behavior is typical of one type of homoclinic
bifurcation.34 Between Homa

1 and Homb
1, the only attractor of the

system is ψα
e .

With increasing S [see Fig. 4(a)], the period-doubling bifurca-
tion line PD2 appears, and SNl,r

2 are created at C2. The bifurcation

diagram in this regime is as shown in Fig. 4(ii) for S = 5. For this
value, PD2 is sliced in two points, namely, PDa,b

2 . With increasing
1, 0a increases its amplitude and eventually starts to spiral around
Homa

1, where it is finally destroyed (see close-up view). 0b now
emerges from Hb

2 subcritically and stabilizes at SNP3 before losing
stability in PD1. Once this point is crossed, 0b describes a large
spiral, before dying at Homb

1.

Chaos 32, 083103 (2022); doi: 10.1063/5.0088597 32, 083103-7

Published under an exclusive license by AIP Publishing

 14 Septem
ber 2023 07:25:06

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Shilnikov homoclinic bifurcations for C = 5 and S = 4.5. (a) Close-up

view of the diagram shown in Fig. 4(i) around Homa,b
1 . Here, we plot ||ψ || as a

function of 1. (b) shows the divergence of the period T of 0a at Hom
a
1 and (c)

the damped oscillatory modification of the period of 0b with1 around Homb
1. See

Fig. 4 for the definition of the labels.

Figure 4(iii) shows the modification of the bifurcation dia-
gram for S = 5.5. As SNP1,2 are further apart, we can see that stable
oscillations of different amplitudes coexist in a narrow 1 interval
in-between SNP1 and the closest PD2 point. However, the main
difference is seen in the right part of the diagram. 0b emerges sub-
critically from Hb

2 (see orange curve) and becomes stable at SNP3,
just before being destabilized at PD1 once more. However, in con-
trast to Fig. 4(ii), 0b does not describe a spiral around Homa

2 but
approaches that point monotonically. Very close to Homa

2, the cycle
is created again at Homb

2, leading to the purple unstable curve 0c.
This cycle is mainly unstable and spirals around Homb

1, where it is
finally destroyed. A detailed study of this configuration is presented
in Sec. V (see Fig. 5).

The bifurcation structure is very similar for S = 6 [see
Fig. 4(iv)], with larger separations between the different saddle-node
bifurcations. For simplicity, we have omitted the solution branches
associated with 0c. For this value of S, Homa,b

1 occurs near one
another. From a stability perspective, everything is equivalent to the
case for S = 5.5.

We have discussed so far the bifurcation structure of the
dynamical states emerging from H2 (i.e., around the right reso-
nance) as this bifurcation is first encountered when S is increased.
However, for S larger than ≈ 7.5, complex nonlinear dynamics also
occur around the left nonlinear resonance. Figure 4(v) illustrates
a slice of Fig. 4(a) for S = 8, where both resonances are plotted.
For this value, the bifurcation structure of the oscillations around
the tilted right resonance becomes much more complex. Regarding
the tilted left one, a new oscillatory state 0d emerges supercritically
from Ha

1. 0d increases its amplitude with 1 and becomes unstable
at SNP5. From Hb

1, the periodic orbit also emerges supercritically,
although it undergoes SNP6 where it becomes unstable. These oscil-
lations correspond to the instability mechanism reported in Refs. 25
and 49 in which the nonlinearity shifts the resonances so as to allow
for a resonant four-wave-mixing process with signal and idler pho-
tons, respectively, on the bonding- and antibonding-like mode of
the dimer. Conversely, the parametric instability originating from
H2 involves signal and idler photons in the same mode (see the
supplemental material of Ref. 26).

From each PD bifurcation, a period-doubling cascade can be
triggered, potentially leading to chaotic dynamics.8 Period doubled
states and chaotic ones will be analyzed in detail in Sec. VI.

For C = 5, neither the Hopf nor the homoclinic bifurcations
emerge from TB points, in contrast to the case in Sec. III for
C = 1.5. Regarding H1,2, we have found that they extend to large
values of 1 and S [far from the range of validity of the mean-field
Eq. (1)50], and no signs have been found about their relation with
TB points. Similarly, we have established that Hom1 forms a close
loop in the parameter space, and, thus, they are detached from any
codimension-two point.

V. HOMOCLINIC BIFURCATIONS

In Sec. IV, we have found that for some ranges of parameters
the periodic oscillations emerging at Hopf bifurcations die out in
global homoclinic bifurcations. These bifurcations take place when
a limit cycle 0 collides with an unstable (hyperbolic) equilibrium for
some set of parameters. As the cycle approaches the unstable equilib-
rium, its period drastically grows, diverging at Hom.7,39 At this point,
the periodic solution 0 becomes a homoclinic orbit γ , i.e., a closed
trajectory linking the unstable equilibrium with itself. Depending
on the nature of such equilibrium, different types of Hom bifur-
cations take place.7,51 In our system, we have identified two types
corresponding to the following conditions:

• When the leading eigenvalues λ1,2 of the Jacobian J are real
(i.e., λs,u = as,u ∈ R) such that as < 0 < au, the Hom orbit γ is
biasymptotic to a saddle equilibrium, and the Hom bifurcation
is commonly called saddle-loop Hom bifurcation.43

• If the leading eigenvalues of J are one real and one complex
conjugate pair (i.e., λs = as ± iωs and λu = au), with as < 0
< au and ωs > 0, the Hom orbit is biasymtotic to a saddle-focus
(SF) equilibrium, and the bifurcation is known as saddle-focus
Hom bifurcation or Shilnikov bifurcation.46 A relevant param-
eter describing the nature of these points is the saddle-index
quantity,7

δ ≡ −Re[λs]/λu. (5)
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FIG. 6. Bifurcation diagram of the principal and subsidiary periodic orbits close to Homb
1 for C = 5 and S = 4.5. (a) shows the bifurcation curve associated with the principal

orbit 0b emerging from Hb
2 and dying at Hom

b
1. Two subsidiary branches 0

s0
b and 0s1

b are also plotted. 0s1
b connects with ψ

β
e at Homb

s1. (b) shows the principal orbit 0b and

the subsidiary curve arising from the fourth PD bifurcation. We label with orbits and its bifurcation curve 0s2
b . In (c), we plot 0b and another subsidiary orbit 0

s3
b , which dies

at Homb
s3. (d) shows the subsidiary curve and 0

s1
b and the tertiary oscillatory state 0t1

b arising from it. The modification of the oscillatory state 0b descending its bifurcation

curve [see orange , , in (a)] is depicted in panels (i)–(iii), where the temporal trace and 3D attractors are depicted.

When δ > 1, the saddle-focus homoclinic orbit is said to be
tame46 and the dynamics are essentially the same as in the
saddle-loop case. In contrast, when δ < 1, the homoclinic orbit
is called wild and the dynamics of the system around it is richer.
In particular, there is an infinite number of SNP and period-
doubling bifurcations in any parameter interval containing the
bifurcation.7,46,48

Let us analyze these bifurcations in our case.

A. Saddle-focus (Shilnikov) homoclinic bifurcation

Most of the homoclinic bifurcations and orbits appearing in
our system are of the Shilnikov type. The bifurcation diagram plot-
ted in Fig. 5(a) shows the appearance of these bifurcations for C = 5
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TABLE I. Features and relevant information about the wild Shilnikov homoclinic bifur-

cations plotted in Fig. 6. SF stands for saddle-focus equilibrium, λs represents the

stable eigenvalues, λu is the unstable real eigenvalue, and δ is the saddle-index

associated with the homoclinic bifurcation.

Label ψ e-type 1 λu λs δ

Homb
1 SF 11.7857 2.4078 −1 − i7.9829 0.4153

Homb
s1 SF 11.8769 2.4282 −1 − i8.0693 0.4118

Homb
s2 SF 11.8216 2.4159 −1 − i8.0166 0.4139

Homb
s3 SF 11.8009 2.4113 −1 − i7.9971 0.4147

Homb
t1 SF 11.8804 2.4289 −1 − i8.0727 0.4116

and S = 4.5. It consists of a close-up view of the diagram shown in
Fig. 4(i). For more clarity, we plot the L2-norm as

||ψ || ≡

√

T−1

∫ T

0

(|ψ1(t)|2 + |ψ2(t)|2) dt, (6)

as a function of 1, where T is the period of the oscillatory state.
This allows us to better visualize the occurrence of different Hom
bifurcations.

Let us first take a look at the self-pulsing state0b emerging from
Hb

2. Soon after its birth, 0b undergoes a first PD bifurcation (see the
red triangle), and its norm ||ψ || changes in a damped oscillatory
fashion while approaching asymptotically Homb

1 [see Fig. 5(a)]. This
structure corresponds to the spiral shown in the inset of Fig. 4(i), and
each fold to an SNP. All along this curve, the period of 0b increases
as it approaches Homb

1, and in doing so, it describes the damped
oscillatory curve in1 plotted in Fig. 5(c). We refer to this state 0b as
the primary periodic orbit.48

In Fig. 6(a), we plot the bifurcation curve associated with the
principal orbit 0b. Its change along such a curve is depicted in
Figs. 6(i)–6(iii). In Fig. 6(i.1) we show the temporal trace of 0b dur-
ing one oscillatory period, and in Fig. 6(i.2), its 3D representation in
the phase subspace {(v2, u2, v1)}.

Moving down along this diagram, the period T of 0b increases
[see Fig. 6(ii.1)], while the periodic attractor approaches the saddle-
focus equilibrium ψβ

e . In doing so, the periodic orbit temporarily
follows the flow around ψβ

e , leading to the almost spiral-like trajec-
tory shown in Fig. 6(ii.2). Close to Homb

1, the periodic orbit looks
like the one shown in Fig. 6(iii), where the oscillatory period has
considerably increased, and where the orbit describes a spiral tra-
jectory around ψβ

e . The behavior of the trajectory around this point
follows the unstable and stable manifolds of the saddle-focus (SF)
equilibrium, being the latter one, responsible for the oscillatory tail
shown in its temporal trace.

Approaching Homb
1, the period of 0b tends to infinity, and at

that point,0b collides with the SF equilibriumψβ
e , leading to the for-

mation of the wild Shilnikov homoclinic orbit γb. This homoclinic
orbit is very similar to the periodic orbit shown in Fig. 6(iii); how-
ever, for this set of parameters, it is unstable. The eigenvalues and
saddle-index associated with this point are shown in Table I.

Very close to the SNPs, the primary bifurcation curve under-
goes PD bifurcations [see red H in Fig. 6(a)], from where other
secondary or subsidiary orbits emerge. The bifurcation curves

associated with two of those secondary orbits 0s0
b and 0s1

b are plotted
in green in Fig. 6(a).

The change of the period-2 orbit 0s1
b around this diagram is

shown in Figs. 7(i)–7(iii). This orbit is well illustrated in Fig. 7(i.2).
As in the single-period case, the period diverges as we descend the
green diagram [see Fig. 7(ii.1)] and approach ψβ

e . The vicinity of
this equilibrium leads to the characteristic spiral trajectory shown in
Fig. 7(ii.2). Further decreasing ||ψ ||, 0s1

b approaches Homb
s1, where

it is destroyed and the homoclinic orbit γ s1
b is created. This state

is known as a two-homoclinic orbit and is very similar to the orbit
plotted in Fig. 7(iii).

Similarly, secondary orbits of a larger period arise from each
of the PD bifurcations as one proceeds down in the diagram. Two of
these curves are plotted in Figs. 6(b) and 6(c). Decreasing ||ψ ||, these
orbits die at Homb

s1 and Homb
s2, leading to new Shilnikov homo-

clinic orbits which occur very close to Homb
1. The characteristics of

these orbits are also shown in Table I. This phenomenon is known as
homoclinic doubling cascade,46 and has been analyzed numerically.52

The main idea is that for 1 > 1Homb
1
, an infinite number of N-

homoclinic orbits γN (with N > 0) accumulate on the right side of
the primary branch finishing at Homb

1.
The secondary green bifurcation curves 0s1,2,3

b also undergoes
PD bifurcation from where period-4 orbits emerge, leading to sim-
ilar homoclinic doubling cascades. We represent this orbit as 0t

b,
where the subindex t stands for tertiary. The bifurcation curve
associated with 0t1

b is shown in Fig. 6(d) together with 0s1
b . The

modification of 0t1
b along this diagram is shown in Figs. 7(iv)–7(vi).

Proceeding down in the diagram, the modification of the orbits is
similar to the single and period-2 cases. At Homb

t1 a four-homoclinic
orbit is formed. This orbit is similar to the long period limit cycle
plotted in Fig. 7(vi).

The limit cycle 0a emerging from Ha
2 [see left red curve in

Fig. 5(a)] also undergoes an oscillatory damped structure around
Homa

1. However, the oscillations in1 are more damped. The period
of 0a diverges as it approaches Homa

1, following the same oscilla-
tory tendency [see Fig. 5(b)]. At Homa

1, the period of the oscillations
becomes infinite, and 0a becomes the homoclinic orbit γa.

In contrast to the symmetrically driven case,35 the absence
of mirror symmetry prevents the existence of pairs of Shilnikov
homoclinic orbits to a single symmetric saddle-focus equilibrium.

B. Saddle-loop homoclinic bifurcation

Increasing S, the previous scenario is modified as illustrated in
Fig. 8(a) for S = 5.5. Here, Homa,b

1 are closer to one another. The
features of these orbits are also shown in Table II. Furthermore, close
to Ha

2, 0a undergoes a series of SNP and PDs, which were absent
before. The divergence of the period close to Homa

1 is depicted in
Fig. 8(b).

In contrast to the situation shown for S = 4.5, the bifurcation
curve 0c emerging from Homb

1 (in purple) does not connect with
Hb

2, but with a new homoclinic bifurcation Homa
2 taking place at the

saddle equilibrium ψ ε
e . In this case [see a close-up view in Fig. 8(a)],

the reconnection follows a monotonic growth in ||ψ || very differ-
ent from the oscillatory one shown in the saddle-focus case. This
saddle-loop homoclinic bifurcation, labeled Homa

2, is characterized
by a scaling law T ∝ −ln(1−1Homa

2
)/au, which governs the period

Chaos 32, 083103 (2022); doi: 10.1063/5.0088597 32, 083103-10

Published under an exclusive license by AIP Publishing

 14 Septem
ber 2023 07:25:06

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 7. Temporal trace and projection on the {(v2, u2, v1)}-subspace of the subsidiary and tertiary oscillatory states 0s1
b and 0t1

b . Panels (i)–(iii) show the modification of 0s1
b

along its bifurcation curve in Fig. 6(a) (see green , , ). At Homb
s1, a two-homoclinic orbit is created which is very similar to the state shown in (iii). Panels (iv)–(vi) show

the modification of 0t1
b (see red , , ) along its bifurcation curve while approaching Homb

t1 in Fig. 6(d). At Hom
b
t1, a two-homoclinic orbit is created, which is very similar to

the state shown in (vi).

of the oscillatory state very close to the bifurcation.7 This divergence
is plotted in Fig. 8(c).

The limit cycle 0b emerging from Hb
2 does not die at Homb

1, but
at another saddle-loop homoclinic bifurcation Homb

2. These homo-
clinic orbits are unstable and, therefore, cannot be observed in direct
numerical time simulations.

VI. CHAOTIC DYNAMICS

In this section, we analyze the emergence of chaotic dynam-
ics, one close to 1 = C, the other when 1 � C, finding two main
scenarios leading to chaos. The first one involves a period-doubling

cascade,8 while the second one is associated with the presence of a
homoclinic bifurcation.39

A. Period doubling cascade to chaos

As shown previously, the periodic orbits emerging from the
different H bifurcations may encounter PD bifurcations, where
period-2 orbits are created, while the former ones become unsta-
ble. This PD process might repeat in cascade and lead to temporal
chaos. Figure 9(a) shows the occurrence of these bifurcations in a
diagram, which depicts |ψ1|2 as a function of S for C = 1 = 5. This
diagram corresponds to a vertical slice of the phase diagram shown
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FIG. 8. (a) Bifurcation diagram showing ||ψ || as a function of 1 around the

Shilnikov bifurcations Homa,b
1 and saddle-loop bifurcations Homa,b

2 for C = 5 and
S = 5.5. (b) shows the divergence of the period of 0a around Hom

a
1. (c) shows

the monotonic divergence of the period of 0c when approaching Hom
a
2.

in Fig. 4(a). We only plot the three equilibrium branches ψγ
e , ψ δ

e ,
andψ ε

e , which are linked through the bifurcations SNl
3 and SNr

3. The

Hopf line H1 cuts the stable branch at two points that we label Ha,b
1 .

From these points, the single-period limit cycle 0a appears super-
critically. The periodic attractor associated with this orbit is plotted
in the 3D phase subspace {(v2, u2, v1)} depicted in Fig. 9(i.1). The
temporal trace is shown in Fig. 9(i.2).

TABLE II. Features and relevant information about the homoclinic bifurcations plotted

in Fig. 8. SF stands for saddle-focus equilibrium, S corresponds to a saddle equilib-

rium, λs represents the stable eigenvalues, λu is an unstable real eigenvalue, and δ

is the saddle-index associated with the homoclinic bifurcation.

Label ψ e-type 1 λu λs δ

Homa
2 S 12.2951 1.1762 −3.1762 2.700 30

Homb
2 S 12.2953 1.1134 −3.1134 2.796 20

Homa
1 SF 12.9672 3.4932 −1 − i9.7634 0.286 26

Homb
1 SF 13.2552 3.5641 −1 − i1.0048 0.280 57

On the left, this state undergoes a pair of SNPs where it loses
and gains stability. Once SNP2 is passed, 0a remains stable until
PD2. This situation is shown in the close-up view plotted in Fig. 9(b).
At PD2, an oscillatory state with two different periods, hereafter 02

a ,
emerges and remains stable until PD4. An example of this state is
plotted in Fig. 9(ii). From PD4, a new oscillatory state, 04

a , emerges
[see Fig. 9(iii)] and after that, a cascade of period-doubling bifurca-
tions (PD8, PD16, etc.) occurs in a very short interval of S. From these
bifurcations, the states 08

a [shown in Fig. 9(iv)] and 016
a (not shown

here) emerge. Increasing a bit further S, the system reaches a regime
characterized by chaotic states like the one shown in Fig. 9(v).

After passing PD2, 02
a undergoes several SNPs and PDs for

increasing values of S, and eventually, it connects back to 0a. The
different limit cycles undergo several SNPs as shown in the close-up
view in Fig. 9(a). A similar structure is found on the right part of the
diagram close to Hb

1.
The period-doubling cascades are also illustrated through the

Feigenbaum diagram8 plotted in Fig. 9(c). This diagram has been
computed by scanning the stable attractors of the system as a
function of S and collecting the local maxima and minima of the
oscillatory states. The extension of this diagram corresponds to the
shadowed gray box in Fig. 9(a). The close-up view corresponds to
the range plotted in Fig. 9(b).

Increasing S, the chaotic attractor increases its morphologi-
cal complexity and undergoes the typical windows of odd period
oscillations.8 A complete understanding of these modifications, and
the crisis suffered by the attractor, requires the analysis of its return
map, as reported in Refs. 53 and 54. The chaotic nature of this
system can be also characterized through the computation of the
Lyapunov exponent and the Kaplan–Yorke dimension associated
with the dynamics. This type of approach has been applied to inves-
tigate the route to chaos in a plasmonic dimer.55 Such analyses are
beyond the scope of this work.

The chaotic dynamics persist until a critical value of S, where
the chaotic attractor collides with an unstable periodic orbit on its
basin boundary and is destroyed. This is a typical phenomenon in
chaotic dynamics and it is known as boundary crisis.8 We label this
boundary crisis BC1 as depicted in Figs. 9(a) and 9(c). After crossing
this point, the only attractor of the system is the stable steady-state
ψ ε

e . Similarly, this route to chaos arises from Hb
1 on the right and

ends in a second BC2 (not shown).

B. Chaos close to a Shilnikov homoclinic bifurcation

In this section, we analyze the emergence of chaotic dynam-
ics close to homoclinic orbits. As stated by the Shilnikov theorem,
if the Shilnikov bifurcation is wild (i.e., δ < 1), chaotic dynam-
ics is expected in the neighborhood of the homoclinic orbit.46 The
interplay between chaotic dynamics and homoclinic orbits has been
studied by different authors, in particular, in the context of the
Rossler model.48,56–58

To illustrate this phenomenon, let us take a look at the curve
shown in Fig. 10, which corresponds to the primary orbit 0b emerg-
ing from Hb

2 and dying at Homb
1. This diagram is a detailed version

of the one plotted in Figs. 5(a) and 6(a). The close-up views of the
diagram around the first four SNPs are shown in the insets, together
with the PD bifurcations PDl,r

j , and the period-2 secondary branches
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FIG. 9. Period doubling cascade and route to chaos for C = 1 = 5. (a) shows the modification of the norm |ψ1|2 as a function of S. The different colored branches

correspond to the oscillatory states with different periodicities. We mark the Hopf bifurcations Ha,b
1 and different PD bifurcations. Solid (dashed) lines correspond to stable

(unstable) states. Panel (b) is a close-up view of (a) around the period-doubling cascade. In (c), we plot the Feigenbaum diagram associated with the shadowed gray in (a),
which shows the local maxima and minima modification of the dynamical attractors with changing S. Panels (i)–(vi) show the time trace (top panel) and projection of the
attractors on the {(v2, u2, v1)}-subspace (bottom panels) for different values of S. From (i) to (vi), these values are, respectively, S = 8.45, 8.50, 8.64, 8.84, 9.10, 10.26. (v)
and (vi) are chaotic attractors.
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FIG. 10. Period doubling route to chaos near a wild Shilnikov homoclinic orbit. (a) shows the bifurcation curve of the principal periodic orbit 0b emerging from Hb
2 and dying

at Homb
1. Panels (i.1)–(iv.1) show a close-up view of (a) around SNP

r
1, SNP

l
2, SNP

r
2, and SNP

l
3, and the subsidiary dynamical state branches 0

s1−s4
b . Panels (i.2)–(iv.2) show

the Feigenbaum diagram and standard period-doubling route to chaos corresponding to the same branches. The chaotic states die at several boundary crises BC
l,r
j .

emerging from them. These plots show a similar structure for the
left and right folds and extend along with the whole diagram with
decreasing ||ψ || (not shown here for simplicity). The panels below
show the Feigenbaum diagrams for the same interval in S and the
period-doubling cascade. The two types of diagrams on the onsets
for the period-2 bifurcations show good agreement. With increasing
S, each of these attractors undergoes a BC and they disappear.

All along this diagram, SNPl,r
i and BCl,r

i accumulate asymptot-
ically around Homb

1 and so do the chaotic regions. Eventually, the
left and right BCs may collide, leading to the merging of the left
and right chaotic attractors very close to Homb

1. Furthermore, while
decreasing ||ψ || and approaching Homb

1, the chaotic attractor comes
closer and closer to the SF ψβ

e , and the trajectories must start to spi-
ral around this point following the stable and unstable manifolds of
ψβ

e , in a similar manner as the one shown in Figs. 6 and 7 for the
homoclinic orbits. The type of chaos associated with these attractors
is commonly known as spiral chaos.57,58 However, due to the expo-
nentially shrinking chaotic intervals when approaching Homb

1, we
have not been able to confirm these two hypotheses.

VII. SUMMARY AND DISCUSSION

In this paper, we have presented a systematic study of the
temporal dynamics arising in the asymmetrically driven dissipa-
tive photonic Bose–Hubbard dimer model. The particularity of this

system is that the coherent excitation is site-dependent. We here
focused on the experimentally relevant case of a single excited
site.21,25–32 This model has proved to describe very well the self-
pulsing dynamics of two coupled photonic cavities under single
beam excitation.25,26 Previous theoretical results have focused on
the symmetrically driven model for which the excitation is site
independent.34,35 These two configurations, however, lead to differ-
ent bifurcation structures, which have important implications for
the dimer dynamics. The main difference between them lies in the
symmetry of the problem. While the symmetrically driven pho-
tonic dimer is invariant under the phase space mirror symmetry
(i.e., under the swapping ψ1 and ψ2), this symmetry is intrinsically
broken for single-site excitation. Due to this feature, in the symmet-
rically driven case, the standard solutions are symmetric, in the sense
that ψ1 = ψ2, while asymmetric ones, satisfying ψ1 6= ψ2, emerge
through pitchfork symmetry breaking bifurcations.35 Such pitchfork
bifurcation is naturally absent in the asymmetrically driven PBHD
studied here. Moreover, in this latter case, both the bonding-like (B)
(ψ1 = ψ2) and the antibonding-like (AB) (ψ1 = −ψ2) modes can be
linearly and nonlinearly excited. This is seen by the two resonances,
located at 1 = ±C, appearing when scanning the detuning, the left
(right) resonance corresponding to the excitation of the AB (B)
mode of the photonic dimer. In the nonlinear regime, this leads to
multistability and self-pulsing dynamics that have no counterparts
in the symmetric case (see, for instance, Figs. 2–4).
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Here, we have detailed the different static and dynamical
regimes as a function of the driving field amplitude S. We have taken
care to present our results by showing the modifications of the solu-
tion branches with respect to the detuning 1. This allows for the
physical interpretation of the dynamics in terms of resonances as
well as a direct comparison with experimental results, which are usu-
ally obtained by scanning1 for a fixed value of S. We focused on two
different coupling rates: C = 1.5 corresponding to a weak coupling
(WC) for which the resonance splitting is comparable to the reso-
nance width of the uncoupled resonators, and C = 5 for which the
resonators are strongly coupled (SC), and, hence, the two resonances
are well separated. We observed that increasing the coupling makes
the shape of the nonlinear resonances and the dynamics more and
more complex. Moreover, for large drivings, while the fixed points
have about the same amplitude in the two resonators (|ψ1| ≈ |ψ2|)
close to the left resonance, they are strongly different for the right
one. This is reminiscent of the symmetry breaking appearing in
nonlinear dimers with hidden PT symmetry.59

The linear stability of the homogeneous equilibrium points ψe

against small perturbations shows the appearance of Hopf bifur-
cations where ψe states are destabilized in favor of periodically
oscillating ones. In both coupling regimes, large relative oscilla-
tion amplitudes are detected (close to 100% contrast), which is of
importance to make efficient parametric oscillators.24 Moreover, the
oscillations can emerge even in regions where bistability is absent.
On the contrary, in symmetrically excited dimers, they occur in the
bistability region generated by the pitchfork bifurcations.35 In this
latter case, the oscillation amplitudes are smaller, unless they trigger
self-switching.

In contrast to the WC case, when the two resonances are ini-
tially well separated (C = 5), the bifurcation structure shows two
distinct, yet connected, self-pulsing regions. The first one occurs
within the SN3 lines [see Fig. 4(a)] and is characterized by a resonant
four-wave-mixing process for which the signal and idler photons
are, respectively, on the B- and AB-like modes of the dimer. This
corresponds to the self-pulsing dynamics reported in Refs. 25 and 49
for which the oscillation period is directly related to the resonance
splitting. The second one appears beyond the cusp bifurcation C1

and the corresponding parametric instability involves signal and
idler photons on both the bonding- and antibonding-like modes, as
for the self-pulsing encountered in the WC case.26

We have also shown that the limit cycles emerging from the
right resonance encounter a variety of homoclinic bifurcations
where they die. By applying known results of dynamical systems
theory,7 the study of these homoclinic bifurcations in the SC regime,
allowed us to identify a homoclinic doubling cascade (see Fig. 6).
Two main types of homoclinics have been identified: the first one
is a closed orbit bi-asymptotic to a saddle-focus equilibrium (i.e., a
Shilnikov homoclinic orbit), while the second one connects a saddle
point with itself. In comparison, in the symmetrically driven model,
solely Shilnikov homoclinic bifurcations appear, and they can only
do it in pairs sharing a single saddle-focus equilibrium.34,35

Chaos has been numerically found in the asymmetrically
driven dissipative Bose–Hubbard dimers.15 We showed that chaotic
dynamics emerge through several period-doubling cascades. One
example of the bifurcation structure of such states is presented in
Fig. 9. We have also analyzed the emergence of chaotic dynamics

close to the Shilnikov homoclinic bifurcations (see Fig. 10). Due to
the absence of the pitchfork bifurcation, the chaotic dynamics found
here differ from those arising in symmetrically driven systems. The
latter are indeed characterized by episodes of dominance in power of
one of the two cavities, interrupted by irregular switching events,34,35

which is not seen in asymmetrically driven dimers.
Depending on the type of application, different parameter

regions may be of interest. Regarding self-pulsing dynamics, they
are avoided for low coupling and high detuning values [see gray
region in Fig. 3(a)], while they seem to be always present in the
SC regime. Increasing the coupling between cavities, the system
dynamics become much more complex. As a result, more compli-
cated temporal dynamics, including chaos, may arise. Therefore, one
should focus on strong coupling regimes for applications related to,
for example, chaotic cryptography.60 Furthermore, different types of
excitable dynamics may arise in different parameter regions. Indeed,
type I excitability has typically been found in the vicinity of homo-
clinic bifurcations, while excitability of type II could arise close to a
canard explosion. These dynamics are essential for optical informa-
tion processing and computation. For instance, they can be key for
designing integrated networks of nonlinear optical cells61 and brain-
inspired software and hardware.62,63 This study is, however, out of
the scope of this work and will be reported elsewhere.45

The complexity of the dynamics appearing in the driven dis-
sipative PBHD model, and the fidelity of this model to describe
coupled Kerr cavities suggest that those dynamical regimes may
be reachable experimentally. Hence, we hope that these results
will be relevant for experimental applications of driven dissipative
Bose–Hubbard dimers as well to nonlinear topological photonic
systems in the form of 1D chains or 2D arrays of coupled resonators.
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