367 research outputs found

    Cooperative Decision Making : a methodology based on collective preferences aggregation

    Get PDF
    National audienceThe benefice of a collective decisions process mainly rests upon the possibility for the participants to confront their respective points of views. To this end, they must have cognitive and technical tools that ease the sharing of the reasons that motivate their own preferences, while accounting for information and feelings they should keep for their own. The paper presents the basis of such a cooperative decision making methodology that allows sharing information by accurately distinguishing the components of a decision and the steps of its elaboration

    Numerical and experimental assessment of the modal curvature method for damage detection in plate structures

    Get PDF
    This paper is concerned with the use of numerically obtained modal curvatures for damage detection in both isotropic and composite laminated plates. Numerical simulations are carried out by using COMSOL Multiphysics as FEM solver of the governing equations, in which a Mindlin-Reissner plate model is assumed and defects are introduced as localized smoothed variations of the baseline (healthy) configuration. Experiments are also performed on steel and aluminum plates using scanning laser vibrometry. This study confirms that the central difference method greatly amplifies the measurement errors and its application leads to ineffective predictions for damage detection, even after denoising. As a consequence, different numerical techniques should be explored to allow the use of numerically obtained modal curvatures for structural health monitoring. Herein, the Savitzky-Golay filter (or least-square smoothing filter) is considered for the numerical differentiation of noisy data

    Numerical and experimental assessment of the modal curvature method for damage detection in plate structures

    Get PDF
    Use of modal curvatures obtained from modal displacement data for damage detection in isotropic and composite laminated plates is addressed through numerical examples and experimental tests. Numerical simulations are carried out employing COMSOL Multiphysics as finite element solver of the equations governing the Mindlin-Reissner plate model. Damages are introduced as localized non-smooth variations of the bending stiffness of the baseline (healthy) configuration. Experiments are also performed on steel and aluminum plates using scanning laser vibrometry. The obtained results confirm that use of the central difference method to compute modal curvatures greatly amplifies the measurement errors and its application leads to unreliable predictions for damage detection, even after denoising. Therefore, specialized ad hoc numerical techniques must be suitably implemented to enable structural health monitoring via modal curvature changes. In this study, the Savitzky-Golay filter (also referred to as least-square smoothing filter) is considered for the numerical differentiation of noisy data. Numerical and experimental results show that this filter is effective for the reliable computation of modal curvature changes in plate structures due to defects and/or damages

    Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

    Get PDF
    The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated

    WiseEye: next generation expandable and programmable camera trap platform for wildlife research

    Get PDF
    Funding: The work was supported by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. The work of S. Newey and RJI was part funded by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS). Details published as an Open Source Toolkit, PLOS Journals at: http://dx.doi.org/10.1371/journal.pone.0169758Peer reviewedPublisher PD

    Modification of proteolytic activity matrix analysis (PrAMA) to measure ADAM10 and ADAM17 sheddase activities in cell and tissue lysates

    Get PDF
    Increases in expression of ADAM10 and ADAM17 genes and proteins have been evaluated, but not validated as cancer biomarkers. Specific enzyme activities better reflect enzyme cellular functions, and might be better biomarkers than enzyme genes or proteins. However, no high throughput assay is available to test this possibility. Recent studies have developed the high throughput real-time proteolytic activity matrix analysis (PrAMA) that integrates the enzymatic processing of multiple enzyme substrates with mathematical-modeling computation. The original PrAMA measures with significant accuracy the activities of individual metalloproteinases expressed on live cells. To make the biomarker assay usable in clinical practice, we modified PrAMA by testing enzymatic activities in cell and tissue lysates supplemented with broad-spectrum non-MP enzyme inhibitors, and by maximizing the assay specificity using systematic mathematical-modeling analyses. The modified PrAMA accurately measured the absence and decreases of ADAM10 sheddase activity (ADAM10sa) and ADAM17sa in ADAM10-/- and ADAM17-/- mouse embryonic fibroblasts (MEFs), and ADAM10- and ADAM17-siRNA transfected human cancer cells, respectively. It also measured the restoration and inhibition of ADAM10sa in ADAM10-cDNA-transfected ADAM10-/- MEFs and GI254023X-treated human cancer cell and tissue lysates, respectively. Additionally, the modified PrAMA simultaneously quantified with significant accuracy ADAM10sa and ADAM17sa in multiple human tumor specimens, and showed the essential characteristics of a robust high throughput multiplex assay that could be broadly used in biomarker studies. Selectively measuring specific enzyme activities, this new clinically applicable assay is potentially superior to the standard protein- and gene-expression assays that do not distinguish active and inactive enzyme forms

    Increased Sensitivity to Broadly Neutralizing Antibodies of End-Stage Disease R5 HIV-1 Correlates with Evolution in Env Glycosylation and Charge

    Get PDF
    BACKGROUND: Induction of broadly neutralizing antibodies, such as the monoclonal antibodies IgGb12, 2F5 and 2G12, is the objective of most antibody-based HIV-1 vaccine undertakings. However, despite the relative conserved nature of epitopes targeted by these antibodies, mechanisms underlying the sensitivity of circulating HIV-1 variants to broadly neutralizing antibodies are not fully understood. Here we have studied sensitivity to broadly neutralizing antibodies of HIV-1 variants that emerge during disease progression in relation to molecular alterations in the viral envelope glycoproteins (Env), using a panel of primary R5 HIV-1 isolates sequentially obtained before and after AIDS onset. PRINCIPAL FINDINGS: HIV-1 R5 isolates obtained at end-stage disease, after AIDS onset, were found to be more sensitive to neutralization by TriMab, an equimolar mix of the IgGb12, 2F5 and 2G12 antibodies, than R5 isolates from the chronic phase. The increased sensitivity correlated with low CD4(+) T cell count at time of virus isolation and augmented viral infectivity. Subsequent sequence analysis of multiple env clones derived from the R5 HIV-1 isolates revealed that, concomitant with increased TriMab neutralization sensitivity, end-stage R5 variants displayed envelope glycoproteins (Envs) with reduced numbers of potential N-linked glycosylation sites (PNGS), in addition to increased positive surface charge. These molecular changes in Env also correlated to sensitivity to neutralization by the individual 2G12 monoclonal antibody (mAb). Furthermore, results from molecular modeling suggested that the PNGS lost at end-stage disease locate in the proximity to the 2G12 epitope. CONCLUSIONS: Our study suggests that R5 HIV-1 variants with increased sensitivity to broadly neutralizing antibodies, including the 2G12 mAb, may emerge in an opportunistic manner during severe immunodeficiency as a consequence of adaptive molecular Env changes, including loss of glycosylation and gain of positive charge

    Macrophage Tropism of Human Immunodeficiency Virus Type 1 Isolates from Brain and Lymphoid Tissues Predicts Neurotropism Independent of Coreceptor Specificity

    Get PDF
    The viral determinants that underlie human immunodeficiency virus type 1 (HIV-1) neurotropism are unknown, due in part to limited studies on viruses isolated from brain. Previous studies suggest that brain-derived viruses are macrophage tropic (M-tropic) and principally use CCR5 for virus entry. To better understand HIV-1 neurotropism, we isolated primary viruses from autopsy brain, cerebral spinal fluid, blood, spleen, and lymph node samples from AIDS patients with dementia and HIV-1 encephalitis. Isolates were characterized to determine coreceptor usage and replication capacity in peripheral blood mononuclear cells (PBMC), monocyte-derived macrophages (MDM), and microglia. Env V1/V2 and V3 heteroduplex tracking assay and sequence analyses were performed to characterize distinct variants in viral quasispecies. Viruses isolated from brain, which consisted of variants that were distinct from those in lymphoid tissues, used CCR5 (R5), CXCR4 (X4), or both coreceptors (R5X4). Minor usage of CCR2b, CCR3, CCR8, and Apj was also observed. Primary brain and lymphoid isolates that replicated to high levels in MDM showed a similar capacity to replicate in microglia. Six of 11 R5 isolates that replicated efficiently in PBMC could not replicate in MDM or microglia due to a block in virus entry. CD4 overexpression in microglia transduced with retroviral vectors had no effect on the restricted replication of these virus strains. Furthermore, infection of transfected cells expressing different amounts of CD4 or CCR5 with M-tropic and non-M-tropic R5 isolates revealed a similar dependence on CD4 and CCR5 levels for entry, suggesting that the entry block was not due to low levels of either receptor. Studies using TAK-779 and AMD3100 showed that two highly M-tropic isolates entered microglia primarily via CXCR4. These results suggest that HIV-1 tropism for macrophages and microglia is restricted at the entry level by a mechanism independent of coreceptor specificity. These findings provide evidence that M-tropism rather than CCR5 usage predicts HIV-1 neurotropism

    HIV-1 Replication in the Central Nervous System Occurs in Two Distinct Cell Types

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of HIV-1-associated dementia (HAD). We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF) of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5) T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells). Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders
    • …
    corecore