636 research outputs found

    Abundances of planetary nebulae in the Galactic bulge

    Get PDF
    Context. Planetary nebulae (PNe) abundances are poorly known for those nebulae in the Galactic bulge. This is because of the high and uneven extinction in the bulge which makes visual spectral measurements difficult. In addition, the extinction corrections may be unreliable. Elements considered are O, N, Ne, S, Ar, and Cl. Aims. We determine the abundances in 19 PNe, 18 of which are located in the bulge. This doubles the number of PNe abundance determinations in the bulge. The Galactic abundance gradient is discussed for five elements. Methods. The mid-infrared spectra measured by the Spitzer Space Telescope are used to determine the abundances. This part of the spectrum is little affected by extinction for which an uncertain correction is no longer necessary. In addition the connection with the visible and ultraviolet spectrum becomes simpler because hydrogen lines are observed both in the infrared and in the visible spectra. In this way we more than double the number of PNe with reliable abundances. Results. Reliable abundances are obtained for O, N, Ne, S, and Ar for Galactic bulge PNe. Conclusions. The Galactic abundance gradient is less steep than previously thought. This is especially true for oxygen. The sulfur abundance is reliable because all stages of ionization expected have been measured. It is not systematically low compared to oxygen as has been found for some Galactic PNe

    Molecular orientational dynamics of the endohedral fullerene Sc3_{3}N@C80_{80} as probed by 13^{13}C and 45^{45}Sc NMR

    Get PDF
    We measure 13C and 45Sc NMR lineshapes and spin-lattice relaxation times (T1) to probe the orientational dynamics of the endohedral metallofullerene Sc3N@C80. The measurements show an activated behavior for molecular reorientations over the full temperature range with a similar behavior for the temperature dependence of the 13C and 45Sc data. Combined with spectral data from Magic Angle Spinning (MAS) NMR, the measurements can be interpreted to mean the motion of the encapsulated Sc3N molecule is independent of that of the C80 cage, although this requires the similar temperature dependence of the 13C and 45Sc spin-lattice relaxation times to be coincidental. For the Sc3N to be fixed to the C80 cage, one must overcome the symmetry breaking effect this has on the Sc3N@C80 system since this would result in more than the observed two 13C lines.Comment: 6 pages, 5 figure

    Glass-capillary collimator for distance compensation and partial monochromatization at rotating-anode X-ray generators

    Get PDF
    Access to the beam ports of rotating-anode X-ray generators is often obstructed by direct-coupled or belt-driven target drives. The construction of an easily adjustable stable glass-capillary collimator is described, which renders possible the unrestricted use of beam ports of these generators. Transmitted intensity and monochromaticity of the primary beam are sufficient for precession photographs of proteins after additional 20 mu m Ni filtering as demonstrated by a precession photograph of hen egg lysozyme. The straight capillary collimator is now a routinely usable low-cost device for each X-ray laboratory

    The Multitude of Molecular Hydrogen Knots in the Helix Nebula

    Get PDF
    We present HST/NICMOS imaging of the H_2 2.12 \mu m emission in 5 fields in the Helix Nebula ranging in radial distance from 250-450" from the central star. The images reveal arcuate structures with their apexes pointing towards the central star. Comparison of these images with comparable resolution ground based images reveals that the molecular gas is more highly clumped than the ionized gas line tracers. From our images, we determine an average number density of knots in the molecular gas ranging from 162 knots/arcmin^2 in the denser regions to 18 knots/arcmin^2 in the lower density outer regions. Using this new number density, we estimate that the total number of knots in the Helix to be ~23,000 which is a factor of 6.5 larger than previous estimates. The total neutral gas mass in the Helix is 0.35 M_\odot assuming a mass of \~1.5x10^{-5} M_\odot for the individual knots. The H_2 intensity, 5-9x10^{-5} erg s^{-1} cm^{-2} sr^{-1}, remains relatively constant with projected distance from the central star suggesting a heating mechanism for the molecular gas that is distributed almost uniformly in the knots throughout the nebula. The temperature and H_2 2.12 \mu m intensity of the knots can be approximately explained by photodissociation regions (PDRs) in the individual knots; however, theoretical PDR models of PN under-predict the intensities of some knots by a factor of 10.Comment: 26 pages, 3 tables, 10 figures; AJ accepte

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    12^{12}C/13^{13}C ratio in planetary nebulae from the IUE archives

    Get PDF
    We investigated the abundance ratio of 12^{12}C/13^{13}C in planetary nebulae by examining emission lines arising from \ion{C}{3} 2s2p ^3P_{2,1,0} \to 2s^2 ^1S_0. Spectra were retrieved from the International Ultraviolet Explorer archives, and multiple spectra of the same object were coadded to achieve improved signal-to-noise. The 13^{13}C hyperfine structure line at 1909.6 \AA was detected in NGC 2440. The 12^{12}C/13^{13}C ratio was found to be 4.4±\sim4.4\pm1.2. In all other objects, we provide an upper limit for the flux of the 1910 \AA line. For 23 of these sources, a lower limit for the 12^{12}C/13^{13}C ratio was established. The impact on our current understanding of stellar evolution is discussed. The resulting high signal-to-noise \ion{C}{3} spectrum helps constrain the atomic physics of the line formation process. Some objects have the measured 1907/1909 flux ratio outside the low-electron density theoretical limit for 12^{12}C. A mixture of 13^{13}C with 12^{12}C helps to close the gap somewhat. Nevertheless, some observed 1907/1909 flux ratios still appear too high to conform to the presently predicted limits. It is shown that this limit, as well as the 1910/1909 flux ratio, are predominantly influenced by using the standard partitioning among the collision strengths for the multiplet 1S0^1S_0--3PJ^3P_J according to the statistical weights. A detailed calculation for the fine structure collision strengths between these individual levels would be valuable.Comment: ApJ accepted: 19 pages, 3 Figures, 2 Table

    Kinematic and morphological modeling of the bipolar nebula Sa2-237

    Full text link
    We present [OIII]500.7nm and Halpha+[NII] images and long-slit, high resolution echelle spectra in the same spectral regions of Sa2--237, a possible bipolar planetary nebula. The image shows a bipolar nebula of about 34" extent, with a narrow waist, and showing strong point symmetry about the central object, indicating it's likely binary nature. The long slit spectra were taken over the long axis of the nebula, and show a distinct ``eight'' shaped pattern in the velocity--space plot, and a maximum projected outflow velocity of V=106km/s, both typical of expanding bipolar planetary nebulae. By model fitting the shape and spectrum of the nebula simultaneously, we derive the inclination of the long axis to be 70 degrees, and the maximum space velocity of expansion to be 308 km/s. Due to asymmetries in the velocities we adopt a new value for the system's heliocentric radial velocity of -30km/s. We use the IRAS and 21cm radio fluxes, the energy distribution, and the projected size of Sa2-237 to estimate it's distance to be 2.1+-0.37kpc. At this distance Sa2-237 has a luminosity of 340 Lsun, a size of 0.37pc, and -- assuming constant expansion velocity -- a nebular age of 624 years. The above radial velocity and distance place Sa2--237 in the disk of the Galaxy at z=255pc, albeit with somewhat peculiar kinematics.Comment: 10pp, 4 fig

    X-ray Imaging of Planetary Nebulae with Wolf-Rayet-type Central Stars: Detection of the Hot Bubble in NGC 40

    Full text link
    We present the results of Chandra X-ray Observatory (CXO) observations of the planetary nebulae (PNs) NGC 40 and Hen 2-99. Both PNs feature late-type Wolf-Rayet central stars that are presently driving fast ~1000 km/s, massive winds into denser, slow-moving (~10 km/s) material ejected during recently terminated asymptotic giant branch (AGB) evolutionary phases. Hence, these observations provide key tests of models of wind-wind interactions in PNs. In NGC 40, we detect faint, diffuse X-ray emission distributed within a partial annulus that lies nested within a ~40'' diameter ring of nebulosity observed in optical and near-infrared images. Hen 2-99 is undetected. The inferred X-ray temperature (T_X ~10^6 K) and luminosity (L_X ~ 2 X 10^30 ergs/s) of NGC 40 are the lowest measured thus far for any PN displaying diffuse X-ray emission. These results, combined with the ring-like morphology of the X-ray emission from NGC 40, suggest that its X-ray emission arises from a ``hot bubble'' that is highly evolved and is generated by a shocked, quasi-spherical fast wind from the central star, as opposed to AGB or post-AGB jet activity. In constrast, the lack of detectable X-ray emission from Hen 2-99 suggests that this PN has yet to enter a phase of strong wind-wind shocks.Comment: 15 pages, 5 figures to appear in The Astrophysical Journa
    corecore