18 research outputs found

    Dipeptidyl-Peptidase IV Activity Is Correlated with Colorectal Cancer Prognosis

    Get PDF
    Background Dipeptidyl-peptidase IV (EC 3.4.14.5) (DPPIV) is a serine peptidase involved in cell differentiation, adhesion, immune modulation and apoptosis, functions that control neoplastic transformation. Previous studies have demonstrated altered expression and activity of tissue and circulating DPPIV in several cancers and proposed its potential usefulness for early diagnosis in colorectal cancer (CRC). Methods and principal findings The activity and mRNA and protein expression of DPPIV was prospectively analyzed in adenocarcinomas, adenomas, uninvolved colorectal mucosa and plasma from 116 CRC patients by fluorimetric, quantitative RT-PCR and immunohistochemical methods. Results were correlated with the most important classic pathological data related to aggressiveness and with 5-year survival rates. Results showed that: 1) mRNA levels and activity of DPPIV increased in colorectal neoplasms (Kruskal-Wallis test, p<0.01); 2) Both adenomas and CRCs displayed positive cytoplasmic immunostaining with luminal membrane reinforcement; 3) Plasmatic DPPIV activity was lower in CRC patients than in healthy subjects (Mann-U test, p<0.01); 4) Plasmatic DPPIV activity was associated with worse overall and disease-free survivals (log-rank p<0.01, Cox analysis p<0.01). Conclusion/significance 1) Up-regulation of DPPIV in colorectal tumors suggests a role for this enzyme in the neoplastic transformation of colorectal tissues. This finding opens the possibility for new therapeutic targets in these patients. 2) Plasmatic DPPIV is an independent prognostic factor in survival of CRC patients. The determination of DPPIV activity levels in the plasma may be a safe, minimally invasive and inexpensive way to define the aggressiveness of CRC in daily practice.This work was supported by grants from the Basque Government (IT8-11/13), the University of the Basque Country UPV/EHU (UFI 11/44), and the Gangoiti Barrera Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Soluble PD-L1 Is an Independent Prognostic Factor in Clear Cell Renal Cell Carcinoma

    Get PDF
    (1). Background: Immunohistochemical (IHC) evaluation of programmed death-1 (PD-1) and its ligand (PD-L1) is being used to evaluate advanced malignancies with potential response to immune checkpoint inhibitors. We evaluated both plasma and tissue expression of PD-1 and PD-L1 in the same cohort of patients, including non-metastatic and metastatic clear cell renal cell carcinoma (CCRCC). Concomitant plasma and tissue expression of PD-1 and PD-L1 was evaluated with emphasis on diagnostic and prognostic implications. (2) Methods: we analyzed PD-1 and PD-L1 IHC expression in tumor tissues and soluble forms (sPD-1 and sPD-L1) in plasma from 89 patients with CCRCC, of which 23 were metastatic and 16 received systemic therapy. The primary endpoint was evaluation of overall survival using Kaplan-Meier analysis and the Cox regression model. Plasma samples from healthy volunteers were also evaluated. (3) Results: Interestingly, sPD-1 and sPD-L1 levels were lower in cancer patients than in controls. sPD-1 and sPD-L1 levels and their counterpart tissue expression both at the tumor center and infiltrating front were not associated. Higher expression of both PD-1 and PD-L1 were associated with tumor grade, necrosis and tumor size. PD-1 was associated to tumor stage (pT) and PD-L1 to metastases. sPD-1 and sPD-L1 were not associated with clinico-pathological parameters, although both were higher in patients with synchronous metastases compared to metachronous ones and sPD-L1 was also higher for metastatic patients compared to non-metastatic patients. sPD-1 was also associated with the International Metastatic Renal Cell Cancer Database Consortium (IMDC) prognostic groups in metastatic CCRCC and also to the Morphology, Attenuation, Size and Structure (MASS) response criteria in metastatic patients treated with systemic therapy, mainly tyrosine-kinase inhibitors. Regarding prognosis, PD-L1 immunostaining at the tumor center with and without the tumor front was associated with worse survival, and so was sPD-L1 at a cut-off >793 ng/mL. Combination of positivity at both the tissue and plasma level increased the level of significance to predict prognosis. (4) Conclusions: Our findings corroborate the role of PD-L1 IHC to evaluate prognosis in CCRCC and present novel data on the usefulness of plasma sPD-L1 as a promising biomarker of survival in this neoplasia.The work was funded by the Basque Government (ELKARTEK KK2018-00090 and KK-2020/00069)

    Serum markers improve current prediction of metastasis development in early-stage melanoma patients: a machine learning-based study

    Get PDF
    Metastasis development represents an important threat for melanoma patients, even when diagnosed at early stages and upon removal of the primary tumor. In this scenario, determination of prognostic biomarkers would be of great interest. Serum contains information about the general status of the organism and therefore represents a valuable source for biomarkers. Thus, we aimed to define serological biomarkers that could be used along with clinical and histopathological features of the disease to predict metastatic events on the early-stage population of patients. We previously demonstrated that in stage II melanoma patients, serum levels of dermcidin (DCD) were associated with metastatic progression. Based on the relevance of the immune response on the cancer progression and the recent association of DCD with local and systemic immune response against cancer cells, serum DCD was analyzed in a new cohort of patients along with interleukin 4 (IL-4), IL-6, IL-10, IL-17A, interferon gamma (IFN-gamma), transforming growth factor-beta (TGF- beta), and granulocyte-macrophage colony-stimulating factor (GM-CSF). We initially recruited 448 melanoma patients, 323 of whom were diagnosed as stages I-II according to AJCC. Levels of selected cytokines were determined by ELISA and Luminex, and obtained data were analyzed employing machine learning and Kaplan-Meier techniques to define an algorithm capable of accurately classifying early-stage melanoma patients with a high and low risk of developing metastasis. The results show that in early-stage melanoma patients, serum levels of the cytokines IL-4, GM-CSF, and DCD together with the Breslow thickness are those that best predict melanoma metastasis. Moreover, resulting algorithm represents a new tool to discriminate subjects with good prognosis from those with high risk for a future metastasis.We are grateful to the Basque Biobank for providing the serum samples. We are also most grateful to Drs Arantza Arrieta and Natalia Maruri (Cruces University Hospital) for their technical support with the serum marker detection. This work was supported by grants from the Basque Government (KK2016-036 and KK2017-041 to MDB), UPV/EHU (GIU17/066 to MDB), H2020-ESCEL JTI (15/01 to MDB), and MINECO (PCIN-2015-241 to MDB

    Terfenadine induces apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms

    Get PDF
    Previously we found that terfenadine, an H1 histamine receptor antagonist, acts as a potent apoptosis inducer in melanoma cells through modulation of Ca2+ homeostasis. In this report, focusing our attention on the apoptotic mechanisms activated by terfenadine, we show that this drug can potentially activate distinct intrinsic signaling pathways depending on culture conditions. Serum-deprived conditions enhance the cytotoxic effect of terfenadine and caspase-4 and -2 are activated upstream of caspase-9. Moreover, although we found an increase in ROS levels, the apoptosis was ROS independent. Conversely, terfenadine treatment in complete medium induced ROS-dependent apoptosis. Caspase-4, -2, and -9 were simultaneously activated and p73 and Noxa induction were involved. ROS inhibition prevented p73 and Noxa expression but not p53 and p21 expression, suggesting a role for Noxa in p53-independent apoptosis in melanoma cells. Finally, we found that terfenadine induced autophagy, that can promote apoptosis. These findings demonstrate the great potential of terfenadine to kill melanoma cells through different cellular signaling pathways and could contribute to define new therapeutic strategies in melanoma

    Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>N</it>-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model.</p> <p>Methods</p> <p>CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling.</p> <p>Results</p> <p>No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells.</p> <p>Conclusions</p> <p>In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.</p

    The nucleus does not significantly affect the migratory trajectories of amoeba in two-dimensional environments

    Get PDF
    For a wide range of cells, from bacteria to mammals, locomotion movements are a crucial systemic behavior for cellular life. Despite its importance in a plethora of fundamental physiological processes and human pathologies, how unicellular organisms efficiently regulate their locomotion system is an unresolved question. Here, to understand the dynamic characteristics of the locomotion movements and to quantitatively study the role of the nucleus in the migration of Amoeba proteus we have analyzed the movement trajectories of enucleated and non-enucleated amoebas on flat two-dimensional (2D) surfaces using advanced non-linear physical-mathematical tools and computational methods. Our analysis shows that both non-enucleated and enucleated amoebas display the same kind of dynamic migration structure characterized by highly organized data sequences, super-diffusion, non-trivial long-range positive correlations, persistent dynamics with trend-reinforcing behavior, and move-step fluctuations with scale invariant properties. Our results suggest that the presence of the nucleus does not significantly affect the locomotion of amoeba in 2D environments.We would like to thank Jose Gonzalez Romero and Jose Miguel Perez Perez from the Institute of Parasitology and Biomedicine "Lopez-Neyra" for their technical assistance, as well as the technical support provided by SGIker of UPV/EHU, European funding (ERDF and ESF), the Basque Government funding (IT1974-16, KK-2018/00090), and by the UPV/EHU and Basque Center of Applied Mathematics (US18/21)

    Dipeptidyl-Peptidase IV Activity Is Correlated with Colorectal Cancer Prognosis

    Get PDF
    Background Dipeptidyl-peptidase IV (EC 3.4.14.5) (DPPIV) is a serine peptidase involved in cell differentiation, adhesion, immune modulation and apoptosis, functions that control neoplastic transformation. Previous studies have demonstrated altered expression and activity of tissue and circulating DPPIV in several cancers and proposed its potential usefulness for early diagnosis in colorectal cancer (CRC). Methods and principal findings The activity and mRNA and protein expression of DPPIV was prospectively analyzed in adenocarcinomas, adenomas, uninvolved colorectal mucosa and plasma from 116 CRC patients by fluorimetric, quantitative RT-PCR and immunohistochemical methods. Results were correlated with the most important classic pathological data related to aggressiveness and with 5-year survival rates. Results showed that: 1) mRNA levels and activity of DPPIV increased in colorectal neoplasms (Kruskal-Wallis test, p<0.01); 2) Both adenomas and CRCs displayed positive cytoplasmic immunostaining with luminal membrane reinforcement; 3) Plasmatic DPPIV activity was lower in CRC patients than in healthy subjects (Mann-U test, p<0.01); 4) Plasmatic DPPIV activity was associated with worse overall and disease-free survivals (log-rank p<0.01, Cox analysis p<0.01). Conclusion/significance 1) Up-regulation of DPPIV in colorectal tumors suggests a role for this enzyme in the neoplastic transformation of colorectal tissues. This finding opens the possibility for new therapeutic targets in these patients. 2) Plasmatic DPPIV is an independent prognostic factor in survival of CRC patients. The determination of DPPIV activity levels in the plasma may be a safe, minimally invasive and inexpensive way to define the aggressiveness of CRC in daily practice.This work was supported by grants from the Basque Government (IT8-11/13), the University of the Basque Country UPV/EHU (UFI 11/44), and the Gangoiti Barrera Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore