25 research outputs found

    Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults

    Get PDF
    The age-related loss of skeletal muscle mass and function is caused, at least in part, by a reduced muscle protein synthetic response to protein ingestion. The magnitude and duration of the postprandial muscle protein synthetic response to ingested protein is dependent on the quantity and quality of the protein consumed. This review characterises the anabolic properties of animal-derived and plant-based dietary protein sources in older adults. While approximately 60 % of dietary protein consumed worldwide is derived from plant sources, plant-based proteins generally exhibit lower digestibility, lower leucine content and deficiencies in certain essential amino acids such as lysine and methionine, which compromise the availability of a complete amino acid profile required for muscle protein synthesis. Based on currently available scientific evidence, animal-derived proteins may be considered more anabolic than plant-based protein sources. However, the production and consumption of animal-derived protein sources is associated with higher greenhouse gas emissions, while plant-based protein sources may be considered more environmentally sustainable. Theoretically, the lower anabolic capacity of plant-based proteins can be compensated for by ingesting a greater dose of protein or by combining various plant-based proteins to provide a more favourable amino acid profile. In addition, leucine co-ingestion can further augment the postprandial muscle protein synthetic response. Finally, prior exercise orn-3 fatty acid supplementation have been shown to sensitise skeletal muscle to the anabolic properties of dietary protein. Applying one or more of these strategies may support the maintenance of muscle mass with ageing when diets rich in plant-based protein are consumed

    Ingestion of free amino acids compared with an equivalent amount of intact protein results in more rapid amino acid absorption and greater postprandial plasma amino acid availability without affecting muscle protein synthesis rates in young adults in a double-blind randomized trial

    Get PDF
    Background The rate of protein digestion and amino acid absorption determines the postprandial rise in circulating amino acids and modulates postprandial muscle protein synthesis rates. Objective We sought to compare protein digestion, amino acid absorption kinetics, and the postprandial muscle protein synthetic response following ingestion of intact milk protein or an equivalent amount of free amino acids. Methods Twenty-four healthy, young participants (mean ± SD age: 22 ± 3 y and BMI 23 ± 2 kg/m2; sex: 12 male and 12 female participants) received a primed continuous infusion of l-[ring-2H5]-phenylalanine and l-[ring-3,5–2H2]-tyrosine, after which they ingested either 30 g intrinsically l-[1–13C]-phenylalanine–labeled milk protein or an equivalent amount of free amino acids labeled with l-[1–13C]-phenylalanine. Blood samples and muscle biopsies were obtained to assess protein digestion and amino acid absorption kinetics (secondary outcome), whole-body protein net balance (secondary outcome), and mixed muscle protein synthesis rates (primary outcome) throughout the 6-h postprandial period. Results Postprandial plasma amino acid concentrations increased after ingestion of intact milk protein and free amino acids (both P < 0.001), with a greater increase following ingestion of the free amino acids than following ingestion of intact milk protein (P-time × treatment < 0.001). Exogenous phenylalanine release into plasma, assessed over the 6-h postprandial period, was greater with free amino acid ingestion (76 ± 9%) than with milk protein treatment (59 ± 10%; P < 0.001). Ingestion of free amino acids and intact milk protein increased mixed muscle protein synthesis rates (P-time < 0.001), with no differences between treatments (from 0.037 ± 0.015%/h to 0.053 ± 0.014%/h and 0.039 ± 0.016%/h to 0.051 ± 0.010%/h, respectively; P-time × treatment = 0.629). Conclusions Ingestion of a bolus of free amino acids leads to more rapid amino acid absorption and greater postprandial plasma amino acid availability than ingestion of an equivalent amount of intact milk protein. Ingestion of free amino acids may be preferred over ingestion of intact protein in conditions where protein digestion and amino acid absorption are compromised

    Protein type, protein dose, and age modulate dietary protein digestion and phenylalanine absorption kinetics and plasma phenylalanine availability in humans

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.BACKGROUND: Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. OBJECTIVE: We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. METHODS: We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine-labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein-derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. RESULTS: A total of 50% ± 14% of dietary protein-derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein-derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein-derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein-derived phenylalanine appearing in the circulation, respectively (P = 0.001). CONCLUSIONS: Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492

    Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans

    Get PDF
    Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2O; 3 mL.kg−1), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters (“modules”) with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions

    The muscle protein synthetic response to food ingestion

    No full text
    Preservation of skeletal muscle mass is of great importance for maintaining both metabolic health and functional capacity. Muscle mass maintenance is regulated by the balance between muscle protein breakdown and synthesis rates. Both muscle protein breakdown and synthesis rates have been shown to be highly responsive to physical activity and food intake. Food intake, and protein ingestion in particular, directly stimulates muscle protein synthesis rates. The postprandial muscle protein synthetic response to feeding is regulated on a number of levels, including dietary protein digestion and amino acid absorption, splanchnic amino acid retention, postprandial insulin release, skeletal muscle tissue perfusion, amino acid uptake by muscle, and intramyocellular signaling. The postprandial muscle protein synthetic response to feeding is blunted in many conditions characterized by skeletal muscle loss, such as aging and muscle disuse. Therefore, it is important to define food characteristics that modulate postprandial muscle protein synthesis. Previous work has shown that the muscle protein synthetic response to feeding can be modulated by changing the amount of protein ingested, the source of dietary protein, as well as the timing of protein consumption. Most of this work has studied the postprandial response to the ingestion of isolated protein sources. Only few studies have investigated the postprandial muscle protein synthetic response to the ingestion of protein dense foods, such as dairy and meat. The current review will focus on the capacity of proteins and protein dense food products to stimulate postprandial muscle protein synthesis and identifies food characteristics that may modulate the anabolic propertie

    Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial

    Get PDF
    Background: Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount, source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention. Objective: We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein. Methods: Sixty healthy older men [mean 6 SEM age: 71 6 1 y; body mass index (in kg/m2 ): 25.3 6 0.3] received a primed continuous infusion of L-[ring-13C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate (WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals. Results: The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35 (2.23 6 0.07 mM) than after MCas-35 (1.53 6 0.08 mM) and WPH-35 (1.50 6 0.04 mM) (P < 0.01). Myofibrillar protein synthesis rates increased after ingesting MCas-35 (P < 0.01) and were higher after ingesting MCas-35 (0.050% 6 0.005%/h) than after WPH-35 (0.032% 6 0.004%/h) (P = 0.03). The postprandial increase in plasma leucine concentrations was greater after ingesting Whey-35 than after WPH-60 (peak value: 580 6 18 compared with 378 6 10 mM, respectively; P < 0.01), despite similar leucine contents (4.4 g leucine). Nevertheless, the ingestion of WPH-60 increased myofibrillar protein synthesis rates above basal rates (0.049% 6 0.007%/h; P = 0.02). Conclusions: The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an equal amount of wheat protein. Ingesting a larger amount of wheat protein (i.e., 60 g) substantially increases myofibrillar protein synthesis rates in healthy older men. This trial was registered at clinicaltrials.gov as NCT0195263

    Carbohydrate coingestion delays dietary protein digestion and absorption but does not modulate postprandial muscle protein accretion

    No full text
    Background: Dietary protein digestion and absorption is an important factor modulating muscle protein accretion. However, there are few data available on the effects of coingesting other macronutrients with protein on digestion and absorption kinetics and the subsequent muscle protein synthetic response. Objective: The objective of the study was to determine the impact of carbohydrate coingestion with protein on dietary protein digestion and absorption and muscle protein accretion in healthy young and older men. Design: Twenty-four healthy young ( aged 21± 1 y, body mass index 21.8 ±0.5 kg/m2 ) and 25 older ( aged 75 ± 1 y, body mass index 25.4 ± 0.6 kg/m2 ) men received a primed continuous L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine infusion and ingested 20 g intrinsically L-[1-13C]-phenylalanine-labeled protein with ( Pro+CHO ) or without ( Pro ) 60 g carbohydrate. Plasma samples and muscle biopsies were collected in a postabsorptive and postprandial state. Results: Carbohydrate coingestion delayed the appearance of exogenous phenylalanine in the circulation ( P = .001 ). Dietary protein-derived phenylalanine availability over the 5-hour postprandial period was lower in the older ( 62 ± 2% ) when compared with the young subjects ( 74 ± 2%; P = .007 ), with no differences between conditions ( P = .20 ). Carbohydrate coingestion did not modulate postprandial muscle protein synthesis rates ( 0.035 ± 0.003 vs 0.043 ± 0.004 and 0.033 ± 0.002 vs 0.035 ± 0.003%/h after Pro vs Pro+CHO in the young and older group, respectively ). In accordance, no differences in muscle protein-bound L-[1-13C]-phenylalanine enrichments were observed between conditions ( 0.020 ± 0.002 vs 0.020 ± 0.002 and 0.019 ± 0.003 vs 0.022 ± 0.004 mole percent excess after Pro vs Pro+CHO in the young and older subjects, respectively ). Conclusion: Carbohydrate coingestion with protein delays dietary protein digestion and absorption but does not modulate postprandial muscle protein accretion in healthy young or older men

    Postprandial protein handling is not impaired in type 2 diabetes patients when compared with normoglycemic controls

    No full text
    Context: The progressive loss of muscle mass with aging is accelerated in type 2 diabetes patients. It has been suggested that this is attributed to a blunted muscle protein synthetic response to food intake. Objective: The objective of the study was to test the hypothesis that the muscle protein synthetic response to protein ingestion is impaired in older type 2 diabetes patients when compared with healthy, normoglycemic controls. Design: A clinical intervention study with two parallel groups was conducted between August 2011 and July 2012. Setting: The study was conducted at the research unit of Maastricht University, The Netherlands. Intervention, Participants, and Main Outcome Measures: Eleven older type 2 diabetes males [diabetes; age 71 ± 1 y, body mass index ( BMI ) 26.2 ± 0.5 kg/m2] and 12 age- and BMI-matched normoglycemic controls ( control; age 74 ± 1 y, BMI 24.8 ± 1.1 kg/m2 ) participated in an experiment in which they ingested 20 g intrinsically L-[1-13C]phenylalanine-labeled protein. Continuous iv L-[ring-2H5]phenylalanine infusion was applied, and blood and muscle samples were obtained to assess amino acid kinetics and muscle protein synthesis rates in the postabsorptive and postprandial state. Results: Plasma insulin concentrations increased after protein ingestion in both groups, with a greater rise in the diabetes group. Postabsorptive and postprandial muscle protein synthesis rates did not differ between groups and averaged 0.029 ± 0.003 vs 0.029 ± 0.003%/h1 and 0.031 ± 0.002 vs 0.033 ± 0.002%/h1 in the diabetes versus control group, respectively. Postprandial L-[1-13C]phenylalanine incorporation into muscle protein did not differ between groups ( 0.018 ± 0.001 vs 0.019 ± 0.002 mole percent excess, respectively ). Conclusions: Postabsorptive muscle protein synthesis and postprandial protein handling is not impaired in older individuals with type 2 diabetes when compared with age-matched, normoglycemic controls

    The Muscle Protein Synthetic Response to Whey Protein Ingestion Is Greater in Middle-Aged Women Compared With Men

    Get PDF
    Rationale: Muscle mass maintenance is largely regulated by the postprandial rise in muscle protein synthesis rates. It remains unclear whether postprandial protein handling differs between women and men. Methods: Healthy men (43 ± 3 years; body mass index, 23.4 ± 0.4 kg/m2; n = 12) and women (46 ± 2 years; body mass index, 21.3 ± 0.5 kg/m2; n = 12) received primed continuous infusions of L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine and ingested 25 g intrinsically L-[1-13C]-phenylalanine–labeled whey protein. Blood samples and muscle biopsies were collected to assess dietary protein digestion and amino acid absorption kinetics as well as basal and postprandial myofibrillar protein synthesis rates. Results: Plasma phenylalanine and leucine concentrations rapidly increased after protein ingestion (both P < 0.001), with no differences between middle-aged women and men (Time × Sex, P = 0.307 and 0.529, respectively). The fraction of dietary protein–derived phenylalanine that appeared in the circulation over the 5-hour postprandial period averaged 56 ± 1% and 53 ± 1% in women and men, respectively (P = 0.145). Myofibrillar protein synthesis rates increased (Time, P = 0.010) from 0.035 ± 0.004%/h and 0.030 ± 0.002%/h in the postabsorptive state (t test, P = 0.319) to 0.045 ± 0.002%/h and 0.034 ± 0.002%/h in the 5-hour postprandial phase in middle-aged women and men, respectively, with higher postprandial myofibrillar protein synthesis rates in women compared with men (ttest, P = 0.005). Middle-aged women showed a greater increase in myofibrillar protein synthesis rates during the early (0 to 2 hours) postprandial period compared with men (Time × Sex, P = 0.001). Conclusions: There are no differences in postabsorptive myofibrillar protein synthesis rates between middle-aged women and men. The myofibrillar protein synthetic response to the ingestion of 25 g whey protein is greater in women than in men

    Protein content and amino acid composition of commercially available plant-based protein isolates

    No full text
    The postprandial rise in essential amino acid (EAA) concentrations modulates the increase in muscle protein synthesis rates after protein ingestion. The EAA content and AA composition of the dietary protein source contribute to the differential muscle protein synthetic response to the ingestion of different proteins. Lower EAA contents and specific lack of sufficient leucine, lysine, and/or methionine may be responsible for the lower anabolic capacity of plant-based compared with animalbased proteins. We compared EAA contents and AA composition of a large selection of plant-based protein sources with animal-based proteins and human skeletal muscle protein. AA composition of oat, lupin, wheat, hemp, microalgae, soy, brown rice, pea, corn, potato, milk, whey, caseinate, casein, egg, and human skeletal muscle protein were assessed using UPLC–MS/MS. EAA contents of plant-based protein isolates such as oat (21%), lupin (21%), and wheat (22%) were lower than animal-based proteins (whey 43%, milk 39%, casein 34%, and egg 32%) and muscle protein (38%). AA profiles largely differed among plant-based proteins with leucine contents ranging from 5.1% for hemp to 13.5% for corn protein, compared to 9.0% for milk, 7.0% for egg, and 7.6% for muscle protein. Methionine and lysine were typically lower in plant-based proteins (1.0 ± 0.3 and 3.6 ± 0.6%) compared with animal-based proteins (2.5 ± 0.1 and 7.0 ± 0.6%) and muscle protein (2.0 and 7.8%, respectively). In conclusion, there are large differences in EAA contents and AA composition between various plant-based protein isolates. Combinations of various plant-based protein isolates or blends of animal and plant-based proteins can provide protein characteristics that closely reflect the typical characteristics of animal-based proteins
    corecore