1,277 research outputs found

    High intragenomic heterogeneity of 16S rRNA genes in a subset of Vibrio vulnificus strains from the western Mediterranean coast

    Get PDF
    Heterogeneity among ribosomal operons in Vibrio vulnificus is purported as a probabilistic indicator of strain virulence and classifies V. vulnificus strains as 16S rRNA genes type A and B. In this study, 16S rRNA genes typing of V. vulnificus strains isolated from the Valencia city coast, in the western Mediterranean, showed that 24 out of 30 isolates were type A, one was type B and five could not be typed. Single strand conformation polymorphism (SSCP) analysis of this gene region revealed complex patterns indicative of intragenomic ribosomal operon sequence heterogeneity. The 16S rRNA genes of three untypeable isolates C27, C30, and C34, along with type A (ATCC 27562) and B (C7184) reference strains, were amplified, cloned and sequenced. The number of unique 16S rRNA gene sequences was 4, 3, and 4 for the environmental isolates. The type strain of the species (ATCC 27562) presented only two 16S rRNA gene types, while the reference isolate C7184 of clinical origin had only one 16S rRNA gene type. Sequences differed from five to 35 bp (99.6% to 97.6% sequence similarity). Areas of variability concentrated in helices 10, 18, and 37 and included variants with short intervening sequences in helix 10. Most of the substitutions showed compensatory mutations suggesting ancient sequence divergence generated by lateral genetransfer. [Int Microbiol 2010; 13(4):179-188

    The ATP,Mg-dependent protein phosphatase: Regulation by casein kinase-1

    Get PDF
    AbstractThe free modulator subunit of the ATP,Mg-dependent phosphatase is phosphorylated up to 1 mol per mol by casein kinase-1, up to 1.85 mol per mol after dephosphorylation by the PCSH1 phosphatase, but 10-fold less when purified in the presence of NaF, suggesting an in vivo phosphorylation of the casein kinase-1 sites. Peptide mapping of 32P-modulator labeled by casein kinase-1 or -2 shows a different phosphorylation pattern. Phosphorylation of the inactive phosphatase by casein kinase-1 prevents the subsequent kinase FA-mediated activation, while it does not impair the activated phosphatase

    Two tales of Annexin A2 knock-down: One of compensatory effects by antisense RNA and another of a highly active hairpin ribozyme

    Get PDF
    Besides altering its own expression during cell transformation, Annexin A2 is upregulated during the progression of many cancer types and also plays key roles during viral infection and multiplication. Consequently, there has been great interest in Annexin A2 as a potential drug target. The successful design of efficient in vivo delivery systems constitutes an obstacle in full exploitation of antisense and RNA-cleaving technologies for the knock-down of specific targets. Efficiency is dependent on the method of delivery and accessibility of the target. Here, hairpin ribozymes and an antisense RNA against rat annexin A2 mRNA were tested for their efficiencies in a T7-driven coupled transcription/translation system. The most efficient ribozyme and antisense RNA were subsequently inserted into a retroviral vector under the control of a tRNA promoter, in a cassette inserted between retroviral Long Terminal Repeats for stable insertion into host DNA. The Phoenix package system based on defective retroviruses was used for virus-mediated gene transfer into PC12 cells. Cells infected with the ribozyme-containing particles died shortly after infection. However, the same ribozyme showed a very high catalytic effect in vitro in cell lysates, explained by its loose hinge helix 2 region. This principle can be transferred to other ribozymes, such as those designed to cleave the guide RNA in the CRISPR/Cas9 technology, as well as to target specific viral RNAs. Interestingly, efficient down-regulation of the expression of Annexin A2 by the antisense RNA resulted in up-regulation of Annexin A7 as a compensatory effect after several cell passages. Indeed, compensatory effects have previously been observed during gene knock-out, but not during knock-down of protein expression. This highlights the problems in interpreting the phenotypic effects of knocking down the expression of a protein. In addition, these data are highly relevant when considering the effects of the CRISPR/Cas9 approach.publishedVersio

    Cooling of Cells and Organs Confers Extensive DNA Strand Breaks Through Oxidative Stress and ATP Depletion

    Get PDF
    Cooling at 4 degrees C is routinely used to lower metabolism and preserve cell and tissue integrity in laboratory and clinical settings, including organ transplantation. However, cooling and rewarming produce cell damage, attributed primarily to a burst of reactive oxygen species (ROS) upon rewarming. While DNA represents a highly vulnerable target of ROS, it is unknown whether cooling and/or rewarming produces DNA damage. Here, we show that cooling alone suffices to produce extensive DNA damage in cultured primary cells and cell lines, including double-strand breaks (DSBs), as shown by comet assay and pulsed-field gel electrophoresis. Cooling-induced DSB formation is time- and temperature-dependent and coincides with an excess production of ROS, rather than a decrease in ATP levels. Immunohistochemistry confirmed that DNA damage activates the DNA damage response marked by the formation of nuclear foci of proteins involved in DSB repair, gamma-H2Ax, and 53BP1. Subsequent rewarming for 24 h fails to recover ATP levels and only marginally lowers DSB amounts and nuclear foci. Precluding ROS formation by dopamine and the hydroxychromanol, Sul-121, dose-dependently reduces DSBs. Finally, a standard clinical kidney transplant procedure, using cold static storage in UW preservation solution up to 24 h in porcine kidney, lowered ATP, increased ROS, and produced increasing amounts of DSBs with recruitment of 53BP1. Given that DNA repair is erroneous by nature, cooling-inflicted DNA damage may affect cell survival, proliferation, and genomic stability, significantly impacting cellular and organ function, with relevance in stem cell and transplantation procedures

    Integration of Mechatronics Design Approach into Teaching of Modeling Practices

    Get PDF
    Engineering design has transformed significantly due to advances in embedded system design and computer technologies. Almost every mechanical design today has some electrical and electronic components. Many products manufactured today contain both electrical and mechanical components and systems. Mechatronics is a design process that is multi-disciplinary in nature and integrates principles of many engineering disciplines including, but not limited to, mechanical engineering and mechanical engineering technology, electrical engineering and electrical engineering technology, and controls engineering. Mechatronic systems can be found in many different places today. These range from computer hard drives and robotic assembly systems, to washing machines, coffee makers, printers, and medical devices, as well as to various advanced manufacturing machines and devices that are numerically controlled, such as additive manufacturing machines, rapid prototyping machines and multi-axis CNC machines. The main purpose for integrating a mechatronics themed activity into a computer-modeling course is to engage students in project-based learning through hands-on activities related to modeling a mechatronic device. Students learn the basics of electromechanical systems, the integration of machine elements (gear reducer) and the basics of actuators (electrical motor), all of which are fundamental to understanding mechatronic systems through activities related to the mechatronic design principles. Hence, engineering design for mechanical engineers and mechanical engineering technologists have to involve embedded multi-disciplinary knowledge with the understanding of both mechanical and electrical systems. This paper will focus on presenting the use of modeling as a vehicle to teaching more complex engineering concepts, such as gears, linkage analysis, animation and the solid modelling course content

    Intra-arterial tert-Butyl-Hydroperoxide Infusion Induces an Exacerbated Sensory Response in the Rat Hind Limb and is Associated with an Impaired Tissue Oxygen Uptake

    Get PDF
    The objective of this study was to investigate oxidative stress and oxygen extraction mechanisms in an animal model of continuous intra-arterial infusion of a free radical donor and in an in vitro model using isolated mitochondria. tert-Butyl-hydroperoxide (tert-BuOOH, 25 mM) was infused for 24 h in the left hind limb of rats to induce soft tissue damage (n = 8). After 7 days, we assessed local sensory response, tissue oxygen consumption, oxygen radicals, and antioxidant levels. In vitro mitochondrial function was measured after stimulation of isolated mitochondria of skeletal muscle cells with increasing doses of tert-BuOOH. tert-BuOOH infusion resulted in an increased skin temperature (p = 0.04), impaired function, and a significantly increased pain sensation (p = 0.03). Venous oxygen saturation levels (p = 0.01) and the antioxidant ceruloplasmin (p = 0.04) were increased. tert-BuOOH inhibited mitochondrial function in vitro. Induction of free radical formation in the rat hind limb results in an exacerbated sensory response and is associated with impaired oxygen extraction, which likely results from mitochondrial dysfunction caused by free radicals

    Reversible thrombocytopenia during hibernation originates from storage and release of platelets in liver sinusoids

    Get PDF
    Immobility is a risk factor for thrombosis due to low blood flow, which may result in activation of the coagulation system, recruitment of platelets and clot formation. Nevertheless, hibernating animals-who endure lengthy periods of immobility-do not show signs of thrombosis throughout or after hibernation. One of the adaptations of hemostasis in hibernators consists of a rapidly reversible reduction of the number of circulating platelets during torpor, i.e., the hibernation phase with reduction of metabolic rate, low blood flow and immobility. It is unknown whether these platelet dynamics in hibernating hamsters originate from storage and release, as suggested for ground squirrel, or from breakdown and de novo synthesis. A reduction in detaching forces due to low blood flow can induce reversible adhesion of platelets to the vessel wall, which is called margination. Here, we hypothesized that storage-and-release by margination to the vessel wall induces reversible thrombocytopenia in torpor. Therefore, we transfused labeled platelets in hibernating Syrian hamster (Mesocricetus auratus) and platelets were analyzed using flow cytometry and electron microscopy. The half-life of labeled platelets was extended from 20 to 30 h in hibernating animals compared to non-hibernating control hamsters. More than 90% of labeled platelets were cleared from the circulation during torpor, followed by emergence during arousal which supports storage-and-release to govern thrombocytopenia in torpor. Furthermore, the low number of immature platelets, plasma level of interleukin-1α and normal numbers of megakaryocytes in bone marrow make platelet synthesis or megakaryocyte rupture via interleukin-1α unlikely to account for the recovery of platelet counts upon arousal. Finally, using large-scale electron microscopy we revealed platelets to accumulate in liver sinusoids, but not in spleen or lung, during torpor. These results thus demonstrate that platelet dynamics in hibernation are caused by storage and release of platelets, most likely by margination to the vessel wall in liver sinusoids. Translating the molecular mechanisms that govern platelet retention in the liver, may be of major relevance for hemostatic management in (accidental) hypothermia and for the development of novel anti-thrombotic strategies

    Temperature effects on DNA damage during hibernation

    Get PDF
    During multiday torpor, deep-hibernating mammals maintain a hypometabolic state where heart rate and ventilation are reduced to 2%–4% of euthermic rates. It is hypothesized that this ischemia-like condition may cause DNA damage through reactive oxygen species production. The reason for intermittent rewarming (arousal) during hibernation might be to repair the accumulated DNA dam-age. Because increasing ambient temperatures (Ta’s) shortens torpor bout duration, we hypothesize that hibernating at higher Ta’swill result in a faster accumulation of genomic DNA damage. To test this, we kept 39 male and female garden dormice at a Ta of either 57C or 107C and obtained tissue at 1, 4, and 8 d in torpor to assess DNA damage and recruitment of DNA repair markers in splenocytes. DNA damage in splenocytes measured by comet assay was significantly higher in almost all torpor groups than in sum-mer euthermic groups. Damage accumulates in the first days of torpor at Ta = 57C (between days 1 and 4) but not at Ta = 107C. At the higher Ta, DNA damage is high at 24 h in torpor, indicating either a faster buildup of DNA damage at higher Ta’soranin-complete repair during arousals in dormice. At 57C, recruitment of the DNA repair protein 53BP1 paralleled the increase in DNA damage over time during torpor. In contrast, after 1 d in torpor at 107C, DNA damage levels were high, but 53BP1 was not re-cruited to the nuclear DNA yet. The data suggest a potential mis-match in the DNA damage/repair dynamics during torpor at higher Ta’s.</p
    corecore