10 research outputs found

    User-interactive wirelessly-communicating “smart” textiles made from multimaterial fibers

    Get PDF
    En raison de la nature intime des interactions homme-textiles (essentiellement, nous sommes entourĂ©s par les textiles 24/7 - soit sous la forme de vĂȘtements que nous portons ou comme rembourrage dans nos voitures, maisons, bureaux, etc.), les textiles intelligents sont devenus des plates-formes de plus en plus attrayantes pour les rĂ©seaux de capteurs innovants biomĂ©dicaux, transducteurs, et des microprocesseurs dĂ©diĂ©s Ă  la surveillance continue de la santĂ©. En mĂȘme temps, l'approche commune dans le domaine des textiles intelligents consiste en l'adaptation de la microĂ©lectronique planaire classique Ă  une sorte de substrat souple. Cela se traduit souvent par de mauvaises propriĂ©tĂ©s mĂ©caniques et donc des compromis au niveau du confort et de l'acceptation des usagers, qui Ă  leur tour peuvent probablement expliquer pourquoi ces solutions Ă©mergent rarement du laboratoire et, Ă  l'exception de certains cas trĂšs spĂ©cifiques, ne soit pas utilisĂ©s dans la vie de tous les jours. Par ailleurs, nous assistons prĂ©sentement Ă  un changement de paradigme au niveau de l'informatique autonome classique vers le concept de calculs distribuĂ©s (ou informatique en nuage). Dans ce cas, la puissance de calcul du nƓud individuel ou d'un dispositif de textile intelligent est moins importante que la capacitĂ© de transmettre des donnĂ©es Ă  l'Internet. Dans ce travail, je propose une nouvelle approche basĂ©e sur l'intĂ©gration de polymĂšre, verre et mĂ©tal dans des structures de fibres miniaturisĂ©es afin de rĂ©aliser des dispositifs de textiles intelligents de prochaine gĂ©nĂ©ration avec des fonctionnalitĂ©s de niveau supĂ©rieur (comme la communication sans fil, la reconnaissance tactile, les interconnexions Ă©lectriques) tout en ayant une forme minimalement envahissante. Tout d'abord, j'Ă©tudie diffĂ©rents modĂšles d'antennes compatibles avec la gĂ©omĂ©trie des fibres et des techniques de fabrication. Ensuite, je dĂ©montre expĂ©rimentalement que ces antennes en fibres multi-matĂ©riaux peuvent ĂȘtre intĂ©grĂ©es dans les textiles lors d’un processus standard de fabrication de textiles. Les tests effectuĂ©s sur ces textiles ont montrĂ© que, pour les scĂ©narios «sur-corps et hors-corps», les propriĂ©tĂ©s Ă©missives en termes de perte de retour (S11), le patron (diagramme) de radiation, l'efficacitĂ© (gain), et le taux d'erreur binaire (TEB) sont directement comparables Ă  des solutions classiques rigides. Ces antennes sont adĂ©quates pour les communications Ă  courte portĂ©e des applications de communications sans fil ayant un dĂ©bit de donnĂ©es de Mo/s (mĂ©ga-octets par seconde) (via protocoles Bluetooth et IEEE 802.15.4 Ă  la frĂ©quence de 2,4 GHz). Des simulations numĂ©riques de taux d'absorption spĂ©cifique dĂ©montrent Ă©galement le plein respect des rĂšgles de sĂ©curitĂ© imposĂ©es par Industrie Canada pour les rĂ©seaux sans fil Ă  proximitĂ© du corps humain. Puisque les matĂ©riaux composites de fibres mĂ©tal-verre-polymĂšre sont fabriquĂ©s en utilisant des fibres de silice creuses de diamĂštre submillimĂ©trique et la technique de dĂ©pĂŽt d'argent Ă  l'Ă©tat liquide, les Ă©lĂ©ments conducteurs sont protĂ©gĂ©s de l'environnement et ceci prĂ©serve aussi les propriĂ©tĂ©s mĂ©caniques et esthĂ©tiques des vĂȘtements. Cet aspect est confirmĂ© par des essais correspondant aux normes de l'industrie du textile, l'Ă©tirement standard et des essais de flexion. De plus, appliquer des revĂȘtements superhydrophobes (WCA = 152Âș, SA = 6Âș) permet une communication sans fil sans interruption de ces textiles sous l'application directe de l'eau, mĂȘme aprĂšs plusieurs cycles de lavage. Enfin, le prototype de textile intelligent fabriquĂ© interagit avec l'utilisateur Ă  travers un dĂ©tecteur tactile et transmet les donnĂ©es tactiles Ă  travers le protocole Bluetooth Ă  un smartphone. Cette dĂ©monstration valide l’approche des fibres multi-matĂ©riaux pour une variĂ©tĂ© d'applications.As we are surrounded by textiles 24/7, either in the form of garments that we wear or as upholstery in our cars, homes, offices, etc., textiles are especially attractive platforms for arrays of innovative biomedical sensors, transducers, and microprocessors dedicated, among other applications, to continuous health monitoring. In the same time, the common approach in the field of smart textiles consists in adaptation of conventional planar microelectronics to some kind of flexible substrate, which often results in poor mechanical properties and thus compromises wearing comfort and complicates garment care, which results in low user acceptance. This explains why such solutions rarely emerge from the lab and, with the exception of some very specific cases, cannot be seen in the everyday life. Furthermore, we are currently witnessing a global shift from classical standalone computing to the concept of distributed computation (e.g. so-called thin clients and cloud storage). In this context, the computation power of the individual node or smart textile device in this case, becomes progressively less important than the ability to relay data to the Internet. In this work, I propose a novel approach based on the idea of integration of polymer, glass and metal into miniaturized fiber structures in order to achieve next-generation smart textile devices with higher-level functionalities, such as wireless communication, touch recognition, electrical interconnects, with minimally-invasive attributes. First, I investigate different possible fiber-shaped antenna designs and fabrication techniques. Next, I experimentally demonstrate that such multi-material fiber antennas can be integrated into textiles during standard textile manufacturing process. Tests conducted on these textiles have shown that, for on-body and off-body scenarios, the emissive properties in terms of return loss (S11), radiation pattern, efficiency (gain), and bit-error rate (BER) are directly comparable to classic ‘rigid’ solutions and adequately address short-range wireless communications applications at Mbps data-rates (via Bluetooth and IEEE 802.15.4 protocols at 2.4 GHz frequency). Numerical simulations of the specific absorption rate (SAR) also demonstrate full compliance with safety regulations imposed by Industry Canada for wireless body area network devices. Since metal-glass-polymer fiber composites were fabricated using sub-millimetre hollow-core silica fibers and liquid state silver deposition technique, the conductor elements are shielded against the environment and preserve the mechanical and cosmetic properties of the garments. This is confirmed by the textile industry standard stretching and bending tests. Additionally, applied superhydrophobic coatings (WCA=152Âș, SA=6Âș) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles. Finally, I fabricated a user-interactive and wireless-communicating smart textile prototype, that interacts with the user through capacitive touch-sensing and relays the touch data through Bluetooth protocol to a smartphone. This demonstration validates that the proposed approach based on multi-material fibers is suitable for applications to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications

    Smart Textiles for Tactile Sensing and Energy Storage

    Get PDF
    Durant ma maĂźtrise, j’ai surtout travaillĂ© sur 2 sujets dans le domaine des textiles intelligents Ă©lectroactifs. Mon premier projet portait sur la fabrication d’un pad textile sensible au toucher utilisant des fibres capacitives en polymĂšres. Les fibres capacitives, prĂ©sentent une grande capacitĂ© et rĂ©sistance, ont Ă©tĂ© fabriquĂ©es utilisant des techniques de fibrage. Pour permettre une connectivitĂ© facile, un mince fil de cuivre a Ă©tĂ© intĂ©grĂ© dans le coeur de la fibre durant l’extrusion. Ces fibres (soft-capacitor) ont des une capacitĂ© par unitĂ© de longueur typiques de 69 nF/m, et des rĂ©sistances de 5 kΩ‹m. Nos mesures et nos modĂšles thĂ©oriques montrent que la capacitĂ© est un paramĂštre trĂšs stable dĂ©terminĂ© par la gĂ©omĂ©trie utilisĂ©e, qui ne dĂ©pend pas du diamĂštre de la fibre ni de ses paramĂštres de fabriquation. La resistivitĂ© de la fibre, quant Ă  elle, a un important coefficient thermique (positif), est trĂšs sensible aux contraintes de tension et dĂ©pend grandement des paramĂštre d’extrusion. Il a aussi Ă©tĂ© dĂ©montrĂ© qu’une fibre capacitive individuelle peut servir de capteur de glissement qui permet de dĂ©terminer, sur sa longueur, la position du contact tactile en mesurant la rĂ©ponse AC de la fibre Ă  un point donnĂ© sur sa surface. La rĂ©ponse Ă©lectrique d’un senseur de ce type est dĂ©crite par le modĂšle de rĂ©seau RC, qui est en accord avec les rĂ©sultats expĂ©rimentaux. Les fibres capacitives dĂ©veloppĂ©es sont souples, de faible diamĂštre, lĂ©gĂšres et n’utilisent pas d’électrolyte liquide, donc elles sont idĂ©ales pour l’intĂ©gration dans les produits textiles. À la fin du chapitre, nous avons dĂ©montrĂ© qu’en tissant un ensemble de fibres capacitives en 1 dimension (fibres parallĂšles), il est possible de tisser un senseur tactile en 2 dimensions. Les performances de ce senseur ont Ă©tĂ© caractĂ©risĂ©es et une bonne isolation entre les canaux a Ă©tĂ© dĂ©montrĂ©e. Un tel senseur possĂšde aussi des fonctionnalitĂ©s multi-touch. Mon deuxiĂšme projet portait sur l’assemblage de cellules Li-ion flexibles et Ă©tirables, leur intĂ©gration dans un textile et leur caractĂ©risation Ă©lectrique dans un contexte de «textiles intelligents». L’aspect chimique de ces cellules a Ă©tĂ© dĂ©veloppĂ© par mon collĂšgue Y.Liu, qui a rĂ©ussi Ă  intĂ©grer la cathode (LiFePO4), l’anode (Li4Ti5o12) et l’électrolyte solide (PEO) dans un systĂšme de cellule Ă©lectrochimique souple. J’ai dĂ©montrĂ© de façon expĂ©rimentale que des batteries de cellules flexibles peuvent ĂȘtre fabriquĂ©s en grande feuilles, puis coupĂ©es en fines ---------- Abstract During my master’s I have mainly worked on two subjects in the research area of electroactive smart textiles. My first project involved building a touch sensitive textile pad using original home-made allpolymer soft capacitor fibers. The capacitor fibers featuring relatively high capacitance and resistance were fabricated using fiber drawing technique. For the ease of connectorization, a thin copper wire was integrated into the fiber core during drawing procedure. Soft-capacitor fibers have a typical capacitance per unit length of 69 nF/m, and a typical resistivity parameter of 5 kΩ‹m. Our measurements and theoretical modeling show that the fiber capacitance is a very stable, geometry defined parameter independent of the fiber diameter, and fiber fabrication parameters. In contrast, fiber resistivity has a very strong positive temperature coefficient, it is highly sensitive to stretching, and it is strongly dependent on the fiber drawing parameters. Next, an individual capacitor fiber was demonstrated to act as a slide sensor that allows determining the touch position along its length by measuring the fiber AC response at a single point at the fiber surface. Electrical response of such a sensor was described by the RC ladder model, with the modelling data in excellent agreement with experimental observations. Developed capacitor fibers are soft, small diameter, lightweight and do not use liquid electrolytes, thus they are ideally suited for the integration into textile products. At the end of the chapter, we have demonstrated that by weaving a one dimensional array of capacitor fibers (in parallel to each other) a fully woven 2D touchpad sensor could be build. Performance of a touchpad sensor was then characterised and the absence of the inter-channel crosstalk was confirmed. We also note that a 2D touchpad has a partial multi-touch functionality. My second project involved assembly of flexible and stretchable Li-ion batteries, their integration into a textile, and their electric characterization in a view of smart textile applications. The chemistry for the battery was developed by my colleague Y. Liu who has combined the relatively conventional Li battery materials including LiFePO4 cathode, Li4Ti5O12 anode and PEO solid electrolyte into a non-conventional soft electrochemical battery system. I have experimentally demonstrated that flexible batteries can be first cast as sheets, and then cut into thin strips, and finally integrated into textile using conventional weaving techniques. Th

    Wearable contactless respiration sensor based on multi-material fibers integrated into textile

    Get PDF
    In this paper, we report on a novel sensor for the contactless monitoring of the respiration rate, made from multi-material fibers arranged in the form of spiral antenna (2.45 GHz central frequency). High flexibility of the used composite metal-glass-polymer fibers permits their integration into a cotton t-shirt without compromising comfort or restricting movement of the user. At the same time, change of the antenna geometry, due to the chest expansion and the displacement of the air volume in the lungs, is found to cause a significant shift of the antenna operational frequency, thus allowing respiration detection. In contrast with many current solutions, respiration is detected without attachment of the electrodes of any kind to the user’s body, neither direct contact of the fiber with the skin is required. Respiration patterns for two male volunteers were recorded with the help of a sensor prototype integrated into standard cotton t-shirt in sitting, standing, and lying scenarios. The typical measured frequency shift for the deep and shallow breathing was found to be in the range 120–200 MHz and 10–15 MHz, respectively. The same spiral fiber antenna is also shown to be suitable for short-range wireless communication, thus allowing respiration data transmission, for example, via the Bluetooth protocol, to mobile handheld devices

    Thin chalcogenide capillaries as efficient waveguides in the mid-IR - THz spectral range

    Full text link
    We present chalcogenide glass As2Se3 capillaries as efficient waveguides in the mid-IR and THz spectral ranges. The capillaries are fabricated using a double crucible glass drawing technique. The wall thickness of the glass capillary is properly designed and controlled during drawing, and we are able to produce capillaries with different wall thickness, starting from 12 \mum and up to 130 \mum. Such capillaries show low loss properties in the whole target wavelength region. In the mid-IR range guidance is governed by Fresnel reflection and antiguidance mechanisms (ARROWs), while in the THz spectral range thin walls capillaries guide via total internal reflection

    A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection

    No full text
    In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual’s breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user’s comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16–1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute
    corecore