301 research outputs found

    Wars of National Liberation: Jus Ad Bellum

    Get PDF

    Wars of National Liberation: Jus Ad Bellum

    Get PDF

    Blocking premature reverse transcription fails to rescue the HIV-1 nucleocapsid-mutant replication defect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nucleocapsid (NC) protein of HIV-1 is critical for viral replication. Mutational analyses have demonstrated its involvement in viral assembly, genome packaging, budding, maturation, reverse transcription, and integration. We previously reported that two conservative NC mutations, His23Cys and His44Cys, cause premature reverse transcription such that mutant virions contain approximately 1,000-fold more DNA than wild-type virus, and are replication defective. In addition, both mutants show a specific defect in integration after infection.</p> <p>Results</p> <p>In the present study we investigated whether blocking premature reverse transcription would relieve the infectivity defects, which we successfully performed by transfecting proviral plasmids into cells cultured in the presence of high levels of reverse transcriptase inhibitors. After subsequent removal of the inhibitors, the resulting viruses showed no significant difference in single-round infective titer compared to viruses where premature reverse transcription did occur; there was no rescue of the infectivity defects in the NC mutants upon reverse transcriptase inhibitor treatment. Surprisingly, time-course endogenous reverse transcription assays demonstrated that the kinetics for both the NC mutants were essentially identical to wild-type when premature reverse transcription was blocked. In contrast, after infection of CD4+ HeLa cells, it was observed that while the prevention of premature reverse transcription in the NC mutants resulted in lower quantities of initial reverse transcripts, the kinetics of reverse transcription were not restored to that of untreated wild-type HIV-1.</p> <p>Conclusions</p> <p>Premature reverse transcription is not the cause of the replication defect but is an independent side-effect of the NC mutations.</p

    6th International Symposium on Retroviral Nucleocapsid

    Get PDF
    Retroviruses and LTR-retrotransposons are widespread in all living organisms and, in some instances such as for HIV, can be a serious threat to the human health. The retroviral nucleocapsid is the inner structure of the virus where several hundred nucleocapsid protein (NC) molecules coat the dimeric, genomic RNA. During the past twenty years, NC was found to play multiple roles in the viral life cycle (Fig. 1), notably during the copying of the genomic RNA into the proviral DNA by viral reverse transcriptase and integrase, and is therefore considered to be a prime target for anti-HIV therapy. The 6th NC symposium was held in the beautiful city of Amsterdam, the Netherlands, on the 20th and 21st of September 2007. All aspects of NC biology, from structure to function and to anti-HIV vaccination, were covered during this meeting

    Multi-Way Multi-Group Segregation and Diversity Indices

    Get PDF
    Background: How can we compute a segregation or diversity index from a three-way or multi-way contingency table, where each variable can take on an arbitrary finite number of values and where the index takes values between zero and one? Previous methods only exist for two-way contingency tables or dichotomous variables. A prototypical three-way case is the segregation index of a set of industries or departments given multiple explanatory variables of both sex and race. This can be further extended to other variables, such as disability, number of years of education, and former military service. Methodology/Principal Findings: We extend existing segregation indices based on Euclidean distance (square of coefficient of variation) and Boltzmann/Shannon/Theil index from two-way to multi-way contingency tables by including multiple summations. We provide several biological applications, such as indices for age polyethism and linkage disequilibrium. We also provide a new heuristic conceptualization of entropy-based indices. Higher order association measures are often independent of lower order ones, hence an overall segregation or diversity index should be the arithmetic mean of the normalized association measures at all orders. These methods are applicable when individuals selfidentify as multiple races or even multiple sexes and when individuals work part-time in multiple industries. Conclusions/Significance: The policy implications of this work are enormous, allowing people to rigorously test whethe

    High-Throughput SHAPE Analysis Reveals Structures in HIV-1 Genomic RNA Strongly Conserved across Distinct Biological States

    Get PDF
    Replication and pathogenesis of the human immunodeficiency virus (HIV) is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001) SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further application of this technology will make possible newly informative analysis of any RNA in a cellular transcriptome

    Inference of evolutionary jumps in large phylogenies using LĂ©vy processes

    Get PDF
    Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis

    Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes

    Get PDF
    Lens epithelium-derived growth factor (LEDGF/p75) tethers lentiviral preintegration complexes (PICs) to chromatin and is essential for effective HIV-1 replication. LEDGF/p75 interactions with lentiviral integrases are well characterized, but the structural basis for how LEDGF/p75 engages chromatin is unknown. We demonstrate that cellular LEDGF/p75 is tightly bound to mononucleosomes (MNs). Our proteomic experiments indicate that this interaction is direct and not mediated by other cellular factors. We determined the solution structure of LEDGF PWWP and monitored binding to the histone H3 tail containing trimethylated Lys36 (H3K36me3) and DNA by NMR. Results reveal two distinct functional interfaces of LEDGF PWWP: a well-defined hydrophobic cavity, which selectively interacts with the H3K36me3 peptide and adjacent basic surface, which non-specifically binds DNA. LEDGF PWWP exhibits nanomolar binding affinity to purified native MNs, but displays markedly lower affinities for the isolated H3K36me3 peptide and DNA. Furthermore, we show that LEDGF PWWP preferentially and tightly binds to in vitro reconstituted MNs containing a tri-methyl-lysine analogue at position 36 of H3 and not to their unmodified counterparts. We conclude that cooperative binding of the hydrophobic cavity and basic surface to the cognate histone peptide and DNA wrapped in MNs is essential for high-affinity binding to chromatin
    • …
    corecore