3,719 research outputs found
Meditation awareness training for the treatment of workaholism: a controlled trial
Background and aims: Workaholism is a form of behavioral addiction that can lead to reduced life and job satisfaction, anxiety, depression, burnout, work–family conflict, and impaired productivity. Given the number of people affected, there is a need for more targeted workaholism treatments. Findings from previous case studies successfully utilizing second-generation mindfulness-based interventions (SG-MBIs) for treating behavioral addiction suggest that SG-MBIs may be suitable for treating workaholism. This study conducted a controlled trial to investigate the effects of an SG-MBI known as meditation awareness training (MAT) on workaholism. Methods: Male and female adults suffering from workaholism (n = 73) were allocated to MAT or a waiting-list control group. Assessments were performed at pre-, post-, and 3-month follow-up phases. Results: MAT participants demonstrated significant and sustained improvements over control-group participants in workaholism symptomatology, job satisfaction, work engagement, work duration, and psychological distress. Furthermore, compared to the control group, MAT participants demonstrated a significant reduction in hours spent working but without a decline in job performance. Discussion and conclusions: MAT may be a suitable intervention for treating workaholism. Further controlled intervention studies investigating the effects of SG-MBIs on workaholism are warranted
American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on optimal analgesia within an enhanced recovery pathway for colorectal surgery: part 1-from the preoperative period to PACU
BACKGROUND: Within an enhanced recovery pathway (ERP), the approach to treating pain should be multifaceted and the goal should be to deliver "optimal analgesia," which we define in this paper as a technique that optimizes patient comfort and facilitates functional recovery with the fewest medication side effects. METHODS: With input from a multi-disciplinary, international group of clinicians, and through a structured review of the literature and use of a modified Delphi method, we achieved consensus surrounding the topic of optimal analgesia in the perioperative period for colorectal surgery patients. DISCUSSION: As a part of the first Perioperative Quality Improvement (POQI) workgroup meeting, we sought to develop a consensus document describing a comprehensive, yet rational and practical, approach for developing an evidence-based plan for achieving optimal analgesia, specifically for a colorectal surgery ERP. The goal was two-fold: (a) that application of this process would lead to improved patient outcomes and (b) that investigation of the questions raised would identify knowledge gaps to aid the direction for research into analgesia within ERPs in the years to come. This document details the evidence for a wide range of analgesic components, with particular focus from the preoperative period to the post-anesthesia care unit. The overall conclusion is that the combination of analgesic techniques employed in the perioperative period is not important as long as it is effective in delivering the goal of optimal analgesia as set forth in this document
American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) Joint Consensus Statement on Optimal Analgesia within an Enhanced Recovery Pathway for Colorectal Surgery: Part 2-From PACU to the Transition Home.
BACKGROUND: Within an enhanced recovery pathway (ERP), the approach to treating pain should be multifaceted and the goal should be to deliver "optimal analgesia", which we define in this paper as a technique that optimizes patient comfort and facilitates functional recovery with the fewest medication side effects. METHODS: With input from a multidisciplinary, international group of experts and through a structured review of the literature and use of a modified Delphi method, we achieved consensus surrounding the topic of optimal analgesia in the perioperative period for colorectal surgery patients. DISCUSSION: As a part of the first Perioperative Quality Improvement (POQI) workgroup meeting, we sought to develop a consensus document describing a comprehensive, yet rational and practical, approach for developing an evidence-based plan for achieving optimal analgesia, specifically for a colorectal surgery within an ERP. The goal was twofold: (a) that application of this process would lead to improved patient outcomes and (b) that investigation of the questions raised would identify knowledge gaps to aid the direction for research into analgesia within ERPs in the years to come. This document details the evidence for a wide range of analgesic components, with particular focus on care in the post-anesthesia care unit, general care ward, and transition to home after discharge. The preoperative and operative consensus statement for analgesia was covered in Part 1 of this paper. The overall conclusion is that the combination of analgesic techniques employed in the perioperative period is not important as long as it is effective in delivering the goal of "optimal analgesia" as set forth in this document
Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces
We demonstrate a new type of optomechanical system employing a movable,
micron-scale waveguide evanescently-coupled to a high-Q optical microresonator.
Micron-scale displacements of the waveguide are observed for
milliwatt(mW)-level optical input powers. Measurement of the spatial variation
of the force on the waveguide indicates that it arises from a cavity-enhanced
optical dipole force due to the stored optical field of the resonator. This
force is used to realize an all-optical tunable filter operating with sub-mW
control power. A theoretical model of the system shows the maximum achievable
force to be independent of the intrinsic Q of the optical resonator and to
scale inversely with the cavity mode volume, suggesting that such forces may
become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at
(http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated
movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm
A Prospective Longitudinal Study of the Clinical Outcomes from Cryptococcal Meningitis following Treatment Induction with 800 mg Oral Fluconazole in Blantyre, Malawi
Introduction: Cryptococcal meningitis is the most common neurological infection in HIV infected patients in Sub Saharan Africa, where gold standard treatment with intravenous amphotericin B and 5 flucytosine is often unavailable or difficult to administer. Fluconazole monotherapy is frequently recommended in national guidelines but is a fungistatic drug compromised by uncertainty over optimal dosing and a paucity of clinical end-point outcome data.
Methods: From July 2010 until March 2011, HIV infected adults with a first episode of cryptococcal meningitis were
recruited at Queen Elizabeth Central Hospital, Blantyre, Malawi. Patients were treated with oral fluconazole monotherapy 800 mg daily, as per national guidelines. ART was started at 4 weeks. Outcomes and factors associated with treatment failure were assessed 4, 10 and 52 weeks after fluconazole initiation.
Results: Sixty patients were recruited. 26/60 (43%) died by 4 weeks. 35/60 (58.0%) and 43/56 (77%) died or failed treatment by 10 or 52 weeks respectively. Reduced consciousness (Glasgow Coma Score ,14 of 15), moderate/severe neurological disability (modified Rankin Score .3 of 5) and confusion (Abbreviated Mental Test Score ,8 of 10) were all common at baseline and associated with death or treatment failure. ART prior to recruitment was not associated with better outcomes.
Conclusions: Mortality and treatment failure from cryptococcal meningitis following initiation of treatment with 800 mg oral fluconazole is unacceptably high. To improve outcomes, there is an urgent need for better therapeutic strategies and point-of-care diagnostics, allowing earlier diagnosis before development of neurological deficit
CuInS2 Quantum Dot and Polydimethylsiloxane Nanocomposites for All-Optical Ultrasound and Photoacoustic Imaging
Dual-modality imaging employing complementary modalities, such as all-optical ultrasound and photoacoustic imaging, is emerging as a well-suited technique for guiding minimally invasive surgical procedures. Quantum dots are a promising material for use in these dual-modality imaging devices as they can provide wavelength-selective optical absorption. The first quantum dot nanocomposite engineered for co-registered laser-generated ultrasound and photoacoustic imaging is presented. The nanocomposites developed, comprising CuInS2 quantum dots and medical-grade polydimethylsiloxane (CIS-PDMS), are applied onto the distal ends of miniature optical fibers. The films exhibit wavelength-selective optical properties, with high optical absorption (> 90%) at 532 nm for ultrasound generation, and low optical absorption (< 5%) at near-infrared wavelengths greater than 700 nm. Under pulsed laser irradiation, the CIS-PDMS films generate ultrasound with pressures exceeding 3.5 MPa, with a corresponding bandwidth of 18 MHz. An ultrasound transducer is fabricated by pairing the coated optical fiber with a Fabry–Pérot (FP) fiber optic sensor. The wavelength-selective nature of the film is exploited to enable co-registered all-optical ultrasound and photoacoustic imaging of an ink-filled tube phantom. This work demonstrates the potential for quantum dots as wavelength-selective absorbers for all-optical ultrasound generation
- …