97 research outputs found

    The M\u3csub\u3er\u3c/sub\u3e-value of chloroplast coupling factor 1

    Get PDF
    The Mr of spinach chloroplast coupling factor 1 has been determined by sedimentation equilibrium and by light scattering to be 400 000 ± 24 600 and 407 000 ± 20 000, respectively. These values differ substantially from that obtained previously (325 000) and are consistent with an α3β3γδε{lunate} subunit stoichiometry. © 1983

    Saturation Behavior: a general relationship described by a simple second-order differential equation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The numerous natural phenomena that exhibit saturation behavior, <it>e.g</it>., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches.</p> <p>Results</p> <p>For the general saturation curve, described in terms of its independent (<it>x</it>) and dependent (<it>y</it>) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study.</p> <p>Conclusions</p> <p>The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.</p

    TGF-β Is Required for Vascular Barrier Function, Endothelial Survival and Homeostasis of the Adult Microvasculature

    Get PDF
    Pericyte-endothelial cell (EC) interactions are critical to both vascular development and vessel stability. We have previously shown that TGF-β signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated the role of TGF-β signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature. TGF-β signaling was inhibited by systemic expression of soluble endoglin (sEng) and inhibition was demonstrated by reduced phospho-smad2 in the adult retina. Blockade of TGF-β signaling led to increased vascular and neural cell apoptosis in the retina, which was associated with decreased retinal function, as measured by electroretinogram (ERG). Perfusion of the inner retinal vasculature was impaired and was accompanied by defective autoregulation and loss of capillary integrity. Fundus angiography and Evans blue permeability assay revealed a breakdown of the blood-retinal-barrier that was characterized by decreased association between the tight junction proteins zo-1 and occludin. Inhibition of TGF-β signaling in cocultures of EC and 10T1/2 cells corroborated the in vivo findings, with impaired EC barrier function, dissociation of EC from 10T1/2 cells, and endothelial cell death, supporting the role of EC-mesenchymal interactions in TGF-β signaling. These results implicate constitutive TGF-β signaling in maintaining the integrity and function of the adult microvasculature and shed light on the potential role of TGF-β signaling in vasoproliferative and vascular degenerative retinal diseases

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Mammalian sex determination—insights from humans and mice

    Get PDF
    Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models

    Computational Treatment of Metalloproteins

    Full text link
    Metalloproteins present a considerable challenge for modeling, especially when the starting point is far from thermodynamic equilibrium. Examples include formidable problems such as metalloprotein folding and structure prediction upon metal addition, removal, or even just replacement; metalloenzyme design, where stabilization of a transition state of the catalyzed reaction in the specific binding pocket around the metal needs to be achieved; docking to metal-containing sites and design of metalloenzyme inhibitors. Even more conservative computations, such as elucidations of the mechanisms and energetics of the reaction catalyzed by natural metalloenzymes, are often nontrivial. The reason is the vast span of time and length scales over which these proteins operate, and thus the resultant difficulties in estimating their energies and free energies. It is required to perform extensive sampling, properly treat the electronic structure of the bound metal or metals, and seamlessly merge the required techniques to assess energies and entropies, or their changes, for the entire system. Additionally, the machinery needs to be computationally affordable. Although a great advancement has been made over the years, including some of the seminal works resulting in the 2013 Nobel Prize in chemistry, many aforementioned exciting applications remain far from reach. We review the methodology on the forefront of the field, including several promising methods developed in our lab that bring us closer to the desired modern goals. We further highlight their performance by a few examples of applications

    Understanding Enzymes: Protein Conformation Coupled Catalysis

    No full text
    Gordon G. Hammes, University Distinguished Service Professor of Biochemistry, Emeritus, Duke University and Professor Emeritus, Chemistry and Chemical Biology, Cornell University, presented a lecture on Tuesday, March 23, 2010, 11 AM in MiRC 102-A on the Georgia Tech Campus.Runtime: 72:10 minutesThe role of conformational changes in enzyme catalysis will be discussed. A model will be advanced consisting of conformational ensembles and multiple reaction pathways to explain the incredible catalytic efficiency of enzymes. The results of ensemble and single-molecule experiments obtained with dihydrofolate reductase will be presented that support this model
    corecore