129 research outputs found

    Aspects of multidrug resistance in breast cancer

    Get PDF

    PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer.

    Get PDF
    INTRODUCTION: The aim of this study was to develop and validate a prognostication model to predict overall and breast cancer specific survival for women treated for early breast cancer in the UK. METHODS: Using the Eastern Cancer Registration and Information Centre (ECRIC) dataset, information was collated for 5,694 women who had surgery for invasive breast cancer in East Anglia from 1999 to 2003. Breast cancer mortality models for oestrogen receptor (ER) positive and ER negative tumours were derived from these data using Cox proportional hazards, adjusting for prognostic factors and mode of cancer detection (symptomatic versus screen-detected). An external dataset of 5,468 patients from the West Midlands Cancer Intelligence Unit (WMCIU) was used for validation. RESULTS: Differences in overall actual and predicted mortality were <1% at eight years for ECRIC (18.9% vs. 19.0%) and WMCIU (17.5% vs. 18.3%) with area under receiver-operator-characteristic curves (AUC) of 0.81 and 0.79 respectively. Differences in breast cancer specific actual and predicted mortality were <1% at eight years for ECRIC (12.9% vs. 13.5%) and <1.5% at eight years for WMCIU (12.2% vs. 13.6%) with AUC of 0.84 and 0.82 respectively. Model calibration was good for both ER positive and negative models although the ER positive model provided better discrimination (AUC 0.82) than ER negative (AUC 0.75). CONCLUSIONS: We have developed a prognostication model for early breast cancer based on UK cancer registry data that predicts breast cancer survival following surgery for invasive breast cancer and includes mode of detection for the first time. The model is well calibrated, provides a high degree of discrimination and has been validated in a second UK patient cohort.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Inclusion of KI67 significantly improves performance of the PREDICT prognostication and prediction model for early breast cancer.

    Get PDF
    BACKGROUND: PREDICT (http://www.predict.nhs.uk) is a prognostication and treatment benefit tool for early breast cancer (EBC). The aim of this study was to incorporate the prognostic effect of KI67 status in a new version (v3), and compare performance with the Predict model that includes HER2 status (v2). METHODS: The validation study was based on 1,726 patients with EBC treated in Nottingham between 1989 and 1998. KI67 positivity for PREDICT is defined as >10% of tumour cells staining positive. ROC curves were constructed for Predict models with (v3) and without (v2) KI67 input. Comparison was made using the method of DeLong. RESULTS: In 1274 ER+ patients the predicted number of events at 10 years increased from 196 for v2 to 204 for v3 compared to 221 observed. The area under the ROC curve (AUC) improved from 0.7611 to 0.7676 (p=0.005) in ER+ patients and from 0.7546 to 0.7595 (p=0.0008) in all 1726 patients (ER+ and ER-). CONCLUSION: Addition of KI67 to PREDICT has led to a statistically significant improvement in the model performance for ER+ patients and will aid clinical decision making in these patients. Further studies should determine whether other markers including gene expression profiling provide additional prognostic information to that provided by PREDICT.SEARCH was funded through a programme grant from Cancer Research UK (C490/A10124) and this work is supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/1471-2407-14-90

    An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation

    Get PDF
    BACKGROUND PREDICT is a breast cancer prognostic and treatment benefit model implemented online. The overall fit of the model has been good in multiple independent case series, but PREDICT has been shown to underestimate breast cancer specific mortality in women diagnosed under the age of 40. Another limitation is the use of discrete categories for tumour size and node status resulting in 'step' changes in risk estimates on moving between categories. We have refitted the PREDICT prognostic model using the original cohort of cases from East Anglia with updated survival time in order to take into account age at diagnosis and to smooth out the survival function for tumour size and node status. METHODS Multivariable Cox regression models were used to fit separate models for ER negative and ER positive disease. Continuous variables were fitted using fractional polynomials and a smoothed baseline hazard was obtained by regressing the baseline cumulative hazard for each patients against time using fractional polynomials. The fit of the prognostic models were then tested in three independent data sets that had also been used to validate the original version of PREDICT. RESULTS In the model fitting data, after adjusting for other prognostic variables, there is an increase in risk of breast cancer specific mortality in younger and older patients with ER positive disease, with a substantial increase in risk for women diagnosed before the age of 35. In ER negative disease the risk increases slightly with age. The association between breast cancer specific mortality and both tumour size and number of positive nodes was non-linear with a more marked increase in risk with increasing size and increasing number of nodes in ER positive disease. The overall calibration and discrimination of the new version of PREDICT (v2) was good and comparable to that of the previous version in both model development and validation data sets. However, the calibration of v2 improved over v1 in patients diagnosed under the age of 40. CONCLUSIONS The PREDICT v2 is an improved prognostication and treatment benefit model compared with v1. The online version should continue to aid clinical decision making in women with early breast cancer

    PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Introduction The aim of this study was to develop and validate a prognostication model to predict overall and breast cancer specific survival for women treated for early breast cancer in the UK. Methods Using the Eastern Cancer Registration and Information Centre (ECRIC) dataset, information was collated for 5,694 women who had surgery for invasive breast cancer in East Anglia from 1999 to 2003. Breast cancer mortality models for oestrogen receptor (ER) positive and ER negative tumours were derived from these data using Cox proportional hazards, adjusting for prognostic factors and mode of cancer detection (symptomatic versus screen-detected). An external dataset of 5,468 patients from the West Midlands Cancer Intelligence Unit (WMCIU) was used for validation. Results Differences in overall actual and predicted mortality were <1% at eight years for ECRIC (18.9% vs. 19.0%) and WMCIU (17.5% vs. 18.3%) with area under receiver-operator-characteristic curves (AUC) of 0.81 and 0.79 respectively. Differences in breast cancer specific actual and predicted mortality were <1% at eight years for ECRIC (12.9% vs. 13.5%) and <1.5% at eight years for WMCIU (12.2% vs. 13.6%) with AUC of 0.84 and 0.82 respectively. Model calibration was good for both ER positive and negative models although the ER positive model provided better discrimination (AUC 0.82) than ER negative (AUC 0.75). Conclusions We have developed a prognostication model for early breast cancer based on UK cancer registry data that predicts breast cancer survival following surgery for invasive breast cancer and includes mode of detection for the first time. The model is well calibrated, provides a high degree of discrimination and has been validated in a second UK patient cohort

    Combination of acellular dermal matrix with a de-epithelialised dermal flap during skin-reducing mastectomy and immediate breast reconstruction

    Get PDF
    INTRODUCTION: Patients with large ptotic breasts undergoing immediate implant-based reconstruction often require skin-reducing mastectomy to optimise the aesthetic outcome. However, healing complications, especially at the resulting inverted T-junction, leading to wound dehiscence, infection, skin necrosis, implant exposure and failed reconstruction have been widely reported. We present an innovative approach for immediate implant-based reconstruction combining porcine- or bovine-derived acellular dermal matrices with a de-epithelialised dermal sling to protect and support the implant, while improving clinical outcomes in this challenging group of patients. MATERIALS AND METHODS: Demographic, tumour and surgical data were reviewed for patients undergoing Wise pattern (T-scar) skin-reducing mastectomies with immediate implant-based reconstruction combining porcine- or bovine-derived acellular dermal matrices with a de-epithelialised dermal sling. RESULTS: This technique was successfully employed to reconstruct five large pendulous breasts in four breast cancer patients with a median age of 50.5 years (range 34–61 years) who were not suitable for, or had declined, flap-based reconstruction. The acellular dermal matrices used were SurgiMend®, StratticeTM and Braxon® and the expandable implants were placed in the sub-pectoral (n = 3) and pre-pectoral (n = 1) planes. The technical steps and clinical outcomes are presented. One patient experienced T-junction breakdown overlying the de-epithelialised dermis without implant loss. CONCLUSION: The combination of an acellular dermal matrix and a dermal sling provides a double-layer ‘water-proofing’ and support for the implants inferiorly, avoiding T-junction breakdown complications, since any dehiscence is on to well-vascularised dermis. Furthermore, the acellular dermal matrix stabilises the implant in the large mastectomy cavity (pocket control). This approach provides a viable option which facilitates mastectomy and immediate implant reconstruction in large-breasted patients

    Algorithms for Hierarchical Clustering: An Overview, II

    Get PDF
    We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations that are available in R and other software environments. We look at hierarchical self-organizing maps, and mixture models. We review grid-based clustering, focusing on hierarchical density-based approaches. Finally we describe a recently developed very efficient (linear time) hierarchical clustering algorithm, which can also be viewed as a hierarchical grid-based algorithm. This review adds to the earlier version, Murtagh and Contreras (2012)

    NMR assignment of the C-terminal actin-binding domain of talin.

    Get PDF
    Talin is a large dimeric 270 kDa adapter protein which binds the cytoplasmic face of a subset of integrin beta-subunits and couples them to the actin cytoskeleton. Here we report the near complete 15N, 13C and 1H chemical shift assignments for the C-terminal actin-binding domain
    • …
    corecore