48 research outputs found
First, Do Less Harm: Confronting the Inconvenient Problems of Patient Safety
[Excerpt] This book is an exploration of why patient safety is advancing at what seems to be an almost glacial pace, despite the often vast and determined efforts of health care workers and managers. A collection of essays from prominent researchers, scholars, and even patients, this book aims to identify some of the gaps in the patient safety movement, the disconnected dots that do not coalesce despite decades of hard work and billions of dollars. It also identifies concerns that have not been integrated into the patient safety discourse or agenda of more established groups
Collaborative Caring: Stories and Reflections on Teamwork in Health Care
[Excerpt] There are many theoretical and conceptual books and countless articles that have explored issues of teamwork in general and teamwork in health care in particular. The editors, and many of the authors in this book, have read most, and have even written some of them. To tackle the issue of teamwork, we have, however, taken a different approach. Rather than write a theoretical book about what teamwork is, what it is not, where it exists in health care, what barriers prevent its implementation and how they can be removed, we have chosen instead to address these questions through narratives and reflections that vividly describe good teamwork as well as problems in creating, leading, and working on genuine teams. What we believe is too often lacking in the literature is a clear and compelling picture of what teamwork looks like on the ground, in the institutions where health care work is delivered and where teams play well, or don\u27t play well, on a daily basis. The question we ask here is thus: What is the state of play in most health care institutions?
To describe the state of play, we have asked clinicians to write what we think of as where the rubber hits the road stories or reflections about the nature of teamwork in their own particular work setting. To gather these stories, we talked to many people in different health care disciplines. In the invitation for submissions we wrote the following: We are seeking short, concise narratives that describe a concrete example in which you personally have been involved. The idea here is not to focus so much on the individual doctor-patient, nurse-patient, therapist-patient communication but the teamwork that was involved in ensuring that the standard of care was met or exceeded. If the patient or family was involved, so much the better. Stories can deal with interprofessional or intraprofessional teamwork. On balance, we would prefer to have more stories about interprofessional or occupational teamwork. Nonetheless, we recognize that interprofessional work depends on the ability to create teamwork within an occupation or profession. Stories involving support staff, such as housekeepers who spoke up about a patient safety issue, are definitely within the purview of this book. We would also welcome personal reflections that would enhance our understanding of either how to produce genuine teamwork or the obstacles that stand in its way
Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (SAGE) I: Overview and Initial Results
We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the
Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the
Spitzer Space Telescope in order to survey the agents of a galaxy's evolution
(SAGE), the interstellar medium (ISM) and stars in the LMC. The detection of
diffuse ISM with column densities >1.2x10^21 H cm^-2 permits detailed studies
of dust processes in the ISM. SAGE's point source sensitivity enables a
complete census of newly formed stars with masses >3 solar masses that will
determine the current star formation rate in the LMC. SAGE's detection of
evolved stars with mass loss rates >1x10^-8 solar masses per year will quantify
the rate at which evolved stars inject mass into the ISM of the LMC. The
observing strategy includes two epochs in 2005, separated by three months, that
both mitigate instrumental artifacts and constrain source variability. The SAGE
data are non-proprietary. The data processing includes IRAC and MIPS pipelines
and a database for mining the point source catalogs, which will be released to
the community in support of Spitzer proposal cycles 4 and 5. We present initial
results on the epoch 1 data with a special focus on the N79 and N83 region. The
SAGE epoch 1 point source catalog has ~4 million sources. The point source
counts are highest for the IRAC 3.6 microns band and decrease dramatically
towards longer wavelengths consistent with the fact that stars dominate the
point source catalogs and that the dusty objects, e.g. young stellar objects
and dusty evolved stars that detected at the longer wavelengths, are rare in
comparison. We outline a strategy for identifying foreground MW stars, that may
comprise as much as 18% of the source list, and background galaxies, that may
comprise ~12% of the source list.Comment: Accepted by the Astronomical Journa
Spitzer survey of the Large Magellanic Cloud, surveying the agents of a galaxy's evolution (SAGE). IV. Dust properties in the interstellar medium
The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 μm to 160 μm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 μm, referred to as the 70 μm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 μm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 μm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding mass increase of ≃13% of the total dust mass in selected regions. The most likely explanation is that the 70 μm excess is due to the production of large very small grains (VSG) through erosion of larger grains in the diffuse medium. This FIR excess could be due to intrinsic variations of the dust/gas ratio, which would then vary from 4.6 to 2.3 times lower than the MW values across the LMC, but X_(CO) values derived from the IR emission would then be about three times lower than those derived from the Virial analysis of the CO data. We also investigate the possibility that the FIR excess is associated with an additional gas component undetected in the available gas tracers. Assuming a constant dust abundance in all ISM phases, the additional gas component would have twice the known H I mass. We show that it is plausible that the FIR excess is due to cold atomic gas that is optically thick in the 21 cm line, while the contribution by a pure H_2 phase with no CO emission remains a possible explanation
The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data
We present constraints on cosmological and astrophysical parameters from
high-resolution microwave background maps at 148 GHz and 218 GHz made by the
Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to
2010. A model of primary cosmological and secondary foreground parameters is
fit to the map power spectra and lensing deflection power spectrum, including
contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the
kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy
from unresolved infrared sources, radio sources, and the correlation between
the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal
SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000,
while the corresponding amplitude of the kinematic SZ power spectrum has a 95%
confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the
WMAP 7-year temperature and polarization power spectra, we find excellent
consistency with the LCDM model. We constrain the number of effective
relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56,
in agreement with the canonical value of Neff=3.046 for three massless
neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39
eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and
Hubble constant measurements. We constrain the amount of primordial helium to
be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure
constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We
also find no evidence for any running of the scalar spectral index, dns/dlnk =
-0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013)
and Dunkley et al. (2013). Matches published JCAP versio
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment