6,193 research outputs found
D3-D5 Holography with Flux
It is shown that the Berezinski-Kosterlitz-Thouless phase transition that has
been found in D3-D5 brane systems with nonzero magnetic field and charge
density can also be found by tuning an extra-dimensional magnetic flux. We find
numerical solutions for the probe D5-brane embedding and discuss properties of
the solutions. We also demonstrate that the nontrivial embeddings include those
which can be regarded as spontaneously breaking chiral symmetry
Improving averted loss estimates for better biodiversity outcomes from offset exchanges
Biodiversity offsetting aims to achieve at least ‘no net loss’ of biodiversity by fully compensating for residual development-induced biodiversity losses after the mitigation hierarchy (avoid, minimise, remediate) has been applied. Actions used to generate offsets can include securing protection, maintaining condition, or enhancing condition of targeted biodiversity at an offset site. Protection and maintenance actions aim to prevent future loss of biodiversity, so such offsets are referred to as ‘averted loss’ offsets. However, the benefits of such approaches can be highly uncertain and opaque, because assumptions about the change in likelihood of loss due to the offset are often implicit. As a result, the gain generated by averting losses can be intentionally or inadvertently overestimated, leading to offset outcomes that are insufficient for achieving no net loss of biodiversity. We present a method and decision tree to guide consistent and credible estimation of the likelihood of loss of a proposed offset site with and without protection, for use when calculating the amount of benefit associated with the ‘protection’ component of averted loss offsets. In circumstances such as when a jurisdictional offset policy applies to most impacts, plausible estimates of averted loss can be very low. Averting further loss of biodiversity is desirable, and averted loss offsets can be a valid approach for generating tangible gains. However, overestimation of averted loss benefits poses a major risk to biodiversity
Integration of Nanostructures into Microsensor Devices on Whole Wafers
Chemical sensors are used in a wide variety of applications, such as environmental monitoring, fire detection, emission monitoring, and health monitoring. The fabrication of chemical sensors involving nanostructured materials holds the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently are limited in the ability to control their location on the sensor, which in turn hinders the progress for batch fabrication. This report discusses the advantages of using nanomaterials in sensor designs, some of the challenges encountered with the integration of nanostructures into microsensor / devices, and then briefly describes different methods attempted by other groups to address this issue. Finally, this report will describe how our approach for the controlled alignment of nanostructures onto a sensor platform was applied to demonstrate an approach for the mass production of sensors with nanostructures
Surface Acoustic Wave Measurements of Surface Cracks in Ceramics
We have extended our earlier investigation of scattering from surface cracks. In particular, we have studied the change in the reflection coefficient of a Rayleigh wave incident on a half-penny shaped surface crack along with the corresponding change in the acoustic crack size estimates as the cracked sample is stressed to fracture. We have examined in this manner both cracks in annealed samples and as-indented cracks. We have found that the fracture behavior for cracks in these two types of samples differ quite significantly, with the cracks in the annealed samples exhibiting a partial crack closure characteristic and the cracks in the as-indented samples displaying both crack closure and crack growth effects
Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing
A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems
Nanoscale Metal Oxide Semiconductors for Gas Sensing
A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical resistance of these SnO2 nanomaterials towards reducing gases. With regard to the sensitivity of the different nascent nanostructures, the electrospun nanofibers appear preferabl
Recommended from our members
Mobile Virtual Realities and Portable Magic Circles
Hybrid reality games such as Pokémon GO enable new approaches to embodied space that problematise traditional understandings of play. More recently, smartphones have again become involved in the provision of a new kind of relationship with space: the space of virtual reality. It is the intention of this exploratory chapter to examine mobile virtual reality as part of the continuum of mobile media in the context of two related themes: (1) physical distraction and (2) embodied space. The chapter will consider how this reassessment might provide new understandings of play’s connection to the ordinary space of daily life before expanding upon these issues within the broader context of the “smartphone movement” and concluding with suggested directions for future research within the field
Cavalier King Charles Spaniels with Chiari-like malformation and Syringomyelia have increased variability of spatio-temporal gait characteristics
Abstract Background Chiari-like malformation in the Cavalier King Charles Spaniel is a herniation of the cerebellum and brainstem into or through the foramen magnum. This condition predisposes to Syringomyelia; fluid filled syrinxes within the spinal cord. The resulting pathology in spinal cord and cerebellum create neuropathic pain and changes in gait. This study aims to quantify the changes in gait for Cavalier King Charles Spaniel with Chiari-like malformation and Syringomyelia. Methods We compared Cavalier King Charles Spaniel with Chiari-like malformation with (n = 9) and without (n = 8) Syringomyelia to Border Terriers (n = 8). Two video cameras and manual tracking was used to quantify gait parameters. Results and conclusions We found a significant increase in coefficient of variation for the spatio-temporal characteristics and ipsilateral distance between paws and a wider base of support in the thoracic limbs but not in the pelvic limbs for Cavalier King Charles Spaniels compared with the border terrier
Chemical Sensors Based on Metal Oxide Nanostructures
This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures
Processing of Nanostructured Devices Using Microfabrication Techniques
Systems and methods that incorporate nanostructures into microdevices are discussed herein. These systems and methods can allow for standard microfabrication techniques to be extended to the field of nanotechnology. Sensors incorporating nanostructures can be fabricated as described herein, and can be used to reliably detect a range of gases with high response
- …