527 research outputs found

    Wide area protection and fault location : review and evaluation of PMU-based methods

    Get PDF
    Wide area protection (WAP) systems use multiple sources of information to improve trip times and reduce the complexity of protection settings. Therefore, such communications-enhanced schemes have the potential to replace conventional transmission system backup protection. Through review and assessment of the present state-of-the-art relating to WAP systems, this paper demonstrates how multiple synchrophasor data sources, and the associated communications systems, can be leveraged to enable new forms of supervisory protection. Two case studies are presented: a scalable WAP architecture for future decentralised power systems, and the validation a prototype WAP system, using the principle of distributed photonic sensing, highlighting how new tools can provide cost-effective solutions to emerging protection challenges

    Fermi liquid theory for the Anderson model out of equilibrium

    Full text link
    We study low-energy properties of the Anderson impurity under a finite bias voltage VV using the perturbation theory in UU of Yamada and Yosida in the nonequilibrium Keldysh diagrammatic formalism, and obtain the Ward identities for the derivative of the self-energy with respect to VV. The self-energy is calculated exactly up to terms of order ω2\omega^2, T2T^2 and V2V^2, and the coefficients are defined with respect to the equilibrium ground state. From these results, the nonlinear response of the current through the impurity has been deduced up to order V3V^3.Comment: 8 pages, 1 figur

    Using Controlled Numbers of Real Faults and Mutants to Empirically Evaluate Coverage-Based Test Case Prioritization

    Get PDF
    Used to establish confidence in the correctness of evolving software, regression testing is an important, yet costly, task. Test case prioritization enables the rapid detection of faults during regression testing by reordering the test suite so that effective tests are run as early as is possible. However, a distinct lack of information about the regression faults found in complex real-world software forced prior experimental studies of these methods to use artificial faults called mutants. Using the Defects4J database of real faults, this paper presents the results of experiments evaluating the effectiveness of four representative test prioritization techniques. Since this paper's results show that prioritization is susceptible to high amounts of variance when only one fault is present, our experiments also control the number of real faults and mutants in the program subject to regression testing. Our overall findings are that, in comparison to mutants, real faults are harder for reordered test suites to quickly detect, suggesting that mutants are not a surrogate for real faults

    Transport Measurements on Nano-engineered Two Dimensional Superconducting Wire Networks

    Full text link
    Superconducting triangular Nb wire networks with high normal-state resistance are fabricated by using a negative tone hydrogen silsesquioxane (HSQ) resist. Robust magnetoresistance oscillations are observed up to high magnetic fields and maintained at low temperatures, due to the eective reduction of wire dimensions. Well-defined dips appear at integral and rational values (1/2, 1/3, 1/4) of the reduced flux f = Phi/Phi_0, which is the first observation in the triangular wire networks. These results are well consistent with theoretical calculations for the reduced critical temperature as a function of f.Comment: 4 pages, 3 figure

    Representation theory of super Yang-Mills algebras

    Full text link
    We study in this article the representation theory of a family of super algebras, called the \emph{super Yang-Mills algebras}, by exploiting the Kirillov orbit method \textit{\`a la Dixmier} for nilpotent super Lie algebras. These super algebras are a generalization of the so-called \emph{Yang-Mills algebras}, introduced by A. Connes and M. Dubois-Violette in \cite{CD02}, but in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras \Cliff_{q}(k) \otimes A_{p}(k), for p3p \geq 3, or p=2p = 2 and q2q \geq 2, appear as a quotient of all super Yang-Mills algebras, for n3n \geq 3 and s1s \geq 1. This provides thus a family of representations of the super Yang-Mills algebras

    Fine structure of excitons in Cu2_2O

    Full text link
    Three experimental observations on 1s-excitons in Cu2_2O are not consistent with the picture of the exciton as a simple hydrogenic bound state: the energies of the 1s-excitons deviate from the Rydberg formula, the total exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet and the triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Derivation and validation of a prognostic model for postoperative risk stratification of critically ill patients with faecal peritonitis

    Get PDF
    Background Prognostic scores and models of illness severity are useful both clinically and for research. The aim of this study was to develop two prognostic models for the prediction of long-term (6 months) and 28-day mortality of postoperative critically ill patients with faecal peritonitis (FP). Methods Patients admitted to intensive care units with faecal peritonitis and recruited to the European GenOSept study were divided into a derivation and a geographical validation subset; patients subsequently recruited to the UK GAinS study were used for temporal validation. Using all 50 clinical and laboratory variables available on day 1 of critical care admission, Cox proportional hazards regression was fitted to select variables for inclusion in two prognostic models, using stepwise selection and nonparametric bootstrapping sampling techniques. Using Area under the receiver operating characteristic curve (AuROC) analysis, the performance of the models was compared to SOFA and APACHE II. Results Five variables (age, SOFA score, lowest temperature, highest heart rate, haematocrit) were entered into the prognostic models. The discriminatory performance of the 6-month prognostic model yielded an AuROC 0.81 (95% CI 0.76–0.86), 0.73 (95% CI 0.69–0.78) and 0.76 (95% CI 0.69–0.83) for the derivation, geographic and temporal external validation cohorts, respectively. The 28-day prognostic tool yielded an AuROC 0.82 (95% CI 0.77–0.88), 0.75 (95% CI 0.69–0.80) and 0.79 (95% CI 0.71–0.87) for the same cohorts. These AuROCs appeared consistently superior to those obtained with the SOFA and APACHE II scores alone. Conclusions The two prognostic models developed for 6-month and 28-day mortality prediction in critically ill septic patients with FP, in the postoperative phase, enhanced the day one SOFA score’s predictive utility by adding a few key variables: age, lowest recorded temperature, highest recorded heart rate and haematocrit. External validation of their predictive capability in larger cohorts is needed, before introduction of the proposed scores into clinical practice to inform decision making and the design of clinical trials

    Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots

    Full text link
    We propose a model for spectral diffusion of localized spins in semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each nuclear spin flip-flop is assumed to be independent, the rate for this process being calculated by a method of moments. Our calculated spin decoherence time TM=0.64T_{M}=0.64 ms for donor electron spins in Si:P is a factor of two longer than spin echo decay measurements. For 31^{31}P nuclear spins we show that spectral diffusion is well into the motional narrowing regime. The calculation for GaAs quantum dots gives TM=1050T_{M}=10-50 μ\mus depending on the quantum dot size. Our theory indicates that nuclear induced spectral diffusion should not be a serious problem in developing spin-based semiconductor quantum computer architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.

    Auger decay of degenerate and Bose-condensed excitons in Cu2_2O

    Full text link
    We study the non-radiative Auger decay of excitons in Cu2_2O, in which two excitons scatter to an excited electron and hole. The exciton decay rate for the direct and the phonon-assisted processes is calculated from first principles; incorporating the band structure of the material leads to a relatively shorter lifetime of the triplet state ortho excitons. We compare our results with the Auger decay rate extracted from data on highly degenerate triplet excitons and Bose-condensed singlet excitons in Cu2_2O.Comment: 15 pages, revtex, figures available from G. Kavoulaki

    Identification of morphological biosignatures in martian analogue field specimens using in situ planetary instrumentation

    Get PDF
    We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, Mössbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement
    corecore