860 research outputs found

    Large-wavelength instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers

    Full text link
    We study the linear stability of the flow of a viscous electrically conducting capillary fluid on a planar fixed plate in the presence of gravity and a uniform magnetic field. We first confirm that the Squire transformation for MHD is compatible with the stress and insulating boundary conditions at the free surface, but argue that unless the flow is driven at fixed Galilei and capillary numbers, the critical mode is not necessarily two-dimensional. We then investigate numerically how a flow-normal magnetic field, and the associated Hartmann steady state, affect the soft and hard instability modes of free surface flow, working in the low magnetic Prandtl number regime of laboratory fluids. Because it is a critical layer instability, the hard mode is found to exhibit similar behaviour to the even unstable mode in channel Hartmann flow, in terms of both the weak influence of Pm on its neutral stability curve, and the dependence of its critical Reynolds number Re_c on the Hartmann number Ha. In contrast, the structure of the soft mode's growth rate contours in the (Re, alpha) plane, where alpha is the wavenumber, differs markedly between problems with small, but nonzero, Pm, and their counterparts in the inductionless limit. As derived from large wavelength approximations, and confirmed numerically, the soft mode's critical Reynolds number grows exponentially with Ha in inductionless problems. However, when Pm is nonzero the Lorentz force originating from the steady state current leads to a modification of Re_c(Ha) to either a sublinearly increasing, or decreasing function of Ha, respectively for problems with insulating and conducting walls. In the former, we also observe pairs of Alfven waves, the upstream propagating wave undergoing an instability at large Alfven numbers.Comment: 58 pages, 16 figure

    Parametric Generation of Subharmonics in a Composite Multiferroic Resonator

    Get PDF
    Parametric generation of subharmonics in a composite multiferroic resonator is observed and investigated. The resonator has the form of a disk and contains two mechanically coupled layers, one of which is amorphous ferromagnet Fe-B-Si-C and the other piezoelectric lead zirconate titanate. The resonator is placed inside two planar electromagnetic coils with orthogonal axes. A static magnetic field of 0-100 Oe is applied parallel to the plane of the resonator. The resonator is excited in the frequency range f = 9-10 kHz by either a harmonic magnetic field with an amplitude of up to 5 Oe generated by one of the coils, or a harmonic electric field with an amplitude of up to 500 V/cm applied to the piezoelectric layer. When the pump field is above a certain threshold, generation of a subharmonic of half-frequency (f/2) is observed for three different excitation methods. The first two employed either the direct magnetoelectric effect or the converse magnetoelectric effect, while in the third a transformer system is utilized. The subharmonic is generated in a limited range of pump frequencies and its amplitude is a nonlinear function of both the pump-field amplitude and the strength of static magnetic field. A theory of parametric generation of the subharmonic in a multiferroic resonator is developed, taking into account the magnetoacoustic nonlinearity of the ferromagnetic layer of the structure and excitation of acoustic resonances near the pump and subharmonic frequencies. The theory qualitatively describes the main characteristics of the subharmonic generation.</p

    Parametric Generation of Subharmonics in a Composite Multiferroic Resonator

    Get PDF
    Parametric generation of subharmonics in a composite multiferroic resonator is observed and investigated. The resonator has the form of a disk and contains two mechanically coupled layers, one of which is amorphous ferromagnet Fe-B-Si-C and the other piezoelectric lead zirconate titanate. The resonator is placed inside two planar electromagnetic coils with orthogonal axes. A static magnetic field of 0-100 Oe is applied parallel to the plane of the resonator. The resonator is excited in the frequency range f = 9-10 kHz by either a harmonic magnetic field with an amplitude of up to 5 Oe generated by one of the coils, or a harmonic electric field with an amplitude of up to 500 V/cm applied to the piezoelectric layer. When the pump field is above a certain threshold, generation of a subharmonic of half-frequency (f/2) is observed for three different excitation methods. The first two employed either the direct magnetoelectric effect or the converse magnetoelectric effect, while in the third a transformer system is utilized. The subharmonic is generated in a limited range of pump frequencies and its amplitude is a nonlinear function of both the pump-field amplitude and the strength of static magnetic field. A theory of parametric generation of the subharmonic in a multiferroic resonator is developed, taking into account the magnetoacoustic nonlinearity of the ferromagnetic layer of the structure and excitation of acoustic resonances near the pump and subharmonic frequencies. The theory qualitatively describes the main characteristics of the subharmonic generation.</p

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    Observation of nuclei with energies 8-30 MeV per nucleon in the Earth's magnetosphere at the altitudes 350 KM

    Get PDF
    Observations of the flux of nuclei with an energy of IO MeV per nucleon on the Salyut-7 Station in September 1984 are presented. The observed flux is smaller by a factor of 50 than the flux detected in May, 1981

    Contents of heavy metals in fructicose epiphytic lichens of Karelia as indicator of atmospheric transport of pollutants

    Get PDF
    Results of studies of heavy metals contents in fruticose epiphytic lichens in Karelia are presented and the influence of different sources on the elemental composition of lichens has been estimated. It has been shown, that long-range atmospheric transport influences strongly the accumulation of Pb, Zn, Cd, Sb. For Al, Fe and Co lithogenic source is the main one. In the Northern Karelia atmospheric transport of Cu, Co and Ni from metallurgic enterprises of the Murmansk Region is important source of these elements

    Highly Conductive Fe-Doped (La,Sr)(Ga,Mg)O3−δ Solid-State Membranes for Electrochemical Application

    Get PDF
    Membranes based on complex solid oxides with oxygen-ionic conductivity are widely used in high-temperature electrochemical devices such as fuel cells, electrolyzers, sensors, gas purifiers, etc. The performance of these devices depends on the oxygen-ionic conductivity value of the membrane. Highly conductive complex oxides with the overall composition of (La,Sr)(Ga,Mg)O3 have regained the attention of researchers in recent years due to the progress in the development of electrochemical devices with symmetrical electrodes. In this research, we studied how the introduction of iron cations into the gallium sublattice in (La,Sr)(Ga,Mg)O3 affects the fundamental properties of the oxides and the electrochemical performance of cells based on (La,Sr)(Ga,Fe,Mg)O3. It was found that the introduction of iron leads to an increase in the electrical conductivity and thermal expansion in an oxidizing atmosphere, while no such behavior was observed in a wet hydrogen atmosphere. The introduction of iron into a (La,Sr)(Ga,Mg)O3 electrolyte leads to an increase in the electrochemical activity of Sr2Fe1.5Mo0.5O6−δ electrodes in contact with the electrolyte. Fuel cell studies have shown that, in the case of a 550 µm-thick Fe-doped (La,Sr)(Ga,Mg)O3 supporting electrolyte (Fe content 10 mol.%) and symmetrical Sr2Fe1.5Mo0.5O6−δ electrodes, the cell exhibits a power density of more than 600 mW/cm2 at 800 °C. © 2023 by the authors

    Mechanical tomography of human corneocytes with a nanoneedle

    Get PDF
    Atomic force microscopy (AFM) can image biological samples and characterize their mechanical properties. However, the low aspect ratio of standard AFM probes typically limits these measurements to surface properties. Here, the intracellular mechanical behavior of human corneocytes is determined using “nanoneedle” AFM probes. The method evaluates the forces experienced by a nanoneedle as it is pushed into and then retracted from the cell. Indentation loops yield the stiffness profile and information on the elastic and nonelastic mechanical properties at a specific depth below the surface of the corneocytes. A clear difference between the softer ∼50-nm-thick external layer and the more rigid internal structure of corneocytes is apparent, which is consistent with the current understanding of the structure of these cells. There are also significant variations in the mechanical properties of corneocytes from different volunteers. The small diameter of the nanoneedle allows this “mechanical tomography” to be performed with high spatial resolution, potentially offering an opportunity to detect biomechanical changes in corneocytes because of, e.g., environmental factors, aging, or dermatological pathologies

    Rapid dissipation of magnetic fields due to Hall current

    Get PDF
    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients, they are able to create current sheets which can be the sites for efficient dissipation of magnetic fields. We recover the frequency, ωMH\omega_{MH}, for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to the exchange of energy between different components of the field. We calculate the time evolution and show that magnetic fields can dissipate on a timescale of order 1/ωMH1/\omega_{MH}. This mechanism can play an important role for magnetic dissipation in systems with very steep density gradients where the ions are static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.
    corecore