1,140 research outputs found

    Kelvin-Helmholtz instability of AB interface in superfluid 3He

    Full text link
    The Kelvin-Helmholtz instability is well-known in classical hydrodynamics, where it explains the sudden emergence of interfacial surface waves as a function of the velocity of flow parallel to the interface. It can be carried over to the inviscid two-fluid dynamics of superfluids, to study different types of interfaces and phase boundaries in quantum fluids. We report measurements on the stability of the phase boundary separating the two bulk phases of superfluid 3He in rotating flow, while the boundary is localized with the gradient of the magnetic field to a position perpendicular to the rotation axis. The results demonstrate that the classic stability condition, when modified for the superfluid environment, is obeyed down to 0.4 Tc, if a large fraction of the magnetic polarization of the B-phase is attributed to a parabolic reduction of the interfacial surface tension with increasing magnetic field.Comment: 14 pages, 14 figure

    Approaches for the preparation of dense ceramics and sintering aids for Sr/Mg doped lanthanum gallate: focus review

    Get PDF
    This review focuses on Sr/Mg doped lanthanum gallate and its use as a dense electrolyte for medium-temperature solid oxide electrochemical devices. Methods for synthesizing the material are discussed, including techniques that lower the temperature required to attain a single-phase crystalline structure. The effects of secondary phases and grain size on conductivity of ceramics are also investigated. Moreover, the techniques used for compacting electrolyte powder and reducing energy expenses, as well as the impacts of sintering aids on ceramic properties, are analyzed. The potential advantages and disadvantages of the proposed alterations to generate an electrolyte from doped lanthanum gallate are evaluated.https://doi.org/10.15826/elmattech.2023.2.02

    Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes?

    Get PDF
    Climate models predict significant warming in the Arctic in the 21st century, which will impact the functioning of terrestrial and aquatic ecosystems as well as alter land‐ocean interactions in the Arctic. Because river discharge and nutrient flux integrate large‐scale processes, they should be sensitive indicators of change, but detection of future changes requires knowledge of current conditions. Our objective in this paper is to evaluate the current state of affairs with respect to estimating nutrient flux to the Arctic Ocean from Russian rivers. To this end we provide estimates of contemporary (1970s–1990s) nitrate, ammonium, and phosphate fluxes to the Arctic Ocean for 15 large Russian rivers. We rely primarily on the extensive data archives of the former Soviet Union and current Russian Federation and compare these values to other estimates and to model predictions. Large discrepancies exist among the various estimates. These uncertainties must be resolved so that the scientific community will have reliable data with which to calibrate Arctic biogeochemical models and so that we will have a baseline against which to judge future changes (either natural or anthropogenic) in the Arctic watershed

    Contribution of magnetotail reconnection to the cross-polar cap electric potential drop

    Get PDF
    Since the work of Dungey (1961), the global circulation pattern with two (dayside and nightside) reconnection regions has become a classic concept. However, the contributions of dayside and nightside sources to the cross-polar cap potential (PCP) are not fully understood, particularly, the relative role and specifics of the nightside source are poorly investigated both in quantitative and qualitative terms. To fill this gap, we address the contributions of dayside and nightside sources to the PCP by conducting global MHD simulations with both idealized solar wind input and an observed event input. The dayside source was parameterized by solar wind–based “dayside merging potential” Φd = LeffVBt sin4(θ/2), whereas to characterize the nightside source we integrated across the tail the dawn-dusk electric field in the plasma sheet (to obtain the “cross-tail potential” Φn). For the idealized run we performed simulations using four MHD codes available at the Community Coordinated Modeling Center to show that contribution of the nightside source is a code-independent feature (although there are many differences in the outputs provided by different codes). Particularly, we show that adding a nightside source to the linear fit function for the ionospheric potential (i.e., using the fit function Φfit = KdΦd + KnΦn + Φ0) considerably improves the fitting results both in the idealized events as well as in the simulation of an observed event. According to these simulations the nightside source contribution to the PCP has a fast response time (<5 min) and a modest efficiency (potential transmission factor from tail to the ionosphere is small, Kn < 0.2), which is closely linked to the primarily inductive character of strong electric field generated in the plasma sheet. The latter time intervals are marked by strongly enhanced nightside (lobe) reconnection and can be associated with substorm expansion phases. This association is further strengthened by the simulated patterns of precipitation, the R1-type field-aligned substorm current wedge currents and Hall electrojet currents, which are consistent with the known substorm signatures

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single-Walled Carbon Nanotubes

    Get PDF
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single Wall Carbon Nanotubes

    Full text link
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues.Comment: 17 pages, 6 figure

    Density-shear instability in electron magneto-hydrodynamics

    Get PDF
    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is "at least as stable" as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD

    Strategy and Tactics in Combinatorial Organic Synthesis. Applications to Drug Discovery

    Get PDF
    A strategic analysis of various issues which pertain to the enablement of combinatorial organic synthesis to produce libraries of non-polymeric organic molecules is given. Methods and examples of the development of solid-phase organic chemistry and its subsequent application to combinatorial library synthesis for drug discovery is illustrated with successful case studies. The synthetic versatility of resin-bound amino-acid-derived imine intermediates to produces, β-sultams and pyridines is shown. Use of natural products as key components for creation of combinatorial libraries is presented using Rauwolfia alkaloids and the cephalosporin nucleus as examples
    corecore