747 research outputs found

    Field-induced insulating states in a graphene superlattice

    Get PDF
    We report on high-field magnetotransport (B up to 35 T) on a gated superlattice based on single-layer graphene aligned on top of hexagonal boron nitride. The large-period moir\'e modulation (15 nm) enables us to access the Hofstadter spectrum in the vicinity of and above one flux quantum per superlattice unit cell (Phi/Phi_0 = 1 at B = 22 T). We thereby reveal, in addition to the spin-valley antiferromagnet at nu = 0, two insulating states developing in positive and negative effective magnetic fields from the main nu = 1 and nu = -2 quantum Hall states respectively. We investigate the field dependence of the energy gaps associated with these insulating states, which we quantify from the temperature-activated peak resistance. Referring to a simple model of local Landau quantization of third generation Dirac fermions arising at Phi/Phi_0 = 1, we describe the different microscopic origins of the insulating states and experimentally determine the energy-momentum dispersion of the emergent gapped Dirac quasi-particles

    On Multiparticle Entanglement via Resonant Interaction between Light and atomic Ensembles

    Full text link
    Multiparticle entangled states generated via interaction between narrow-band light and an ensemble of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical schemes for preparing entangled states of atomic ensembles by projective measurement are described.Comment: 11 pages, 1 figure, revtex

    Quantum teleportation of entangled coherent states

    Get PDF
    We propose a simple scheme for the quantum teleportation of both bipartite and multipartite entangled coherent states with the successful probability 1/2. The scheme is based on only linear optical devices such as beam splitters and phase shifters, and two-mode photon number measurements. The quantum channels described by multipartite maximally entangled coherent states are readily made by the beam splitters and phase shifters.Comment: 4 pages, no figure

    Giant Nonlocality near the Dirac Point in Graphene

    Get PDF
    Transport measurements have been a powerful tool for uncovering new electronic phenomena in graphene. We report nonlocal measurements performed in the Hall bar geometry with voltage probes far away from the classical path of charge flow. We observe a large nonlocal response near the Dirac point in fields as low as 0.1T, which persists up to room temperature. The nonlocality is consistent with the long-range flavor currents induced by lifting of spin/valley degeneracy. The effect is expected to contribute strongly to all magnetotransport phenomena near the neutrality point

    Density of states and zero Landau level probed through capacitance of graphene

    Get PDF
    We report capacitors in which a finite electronic compressibility of graphene dominates the electrostatics, resulting in pronounced changes in capacitance as a function of magnetic field and carrier concentration. The capacitance measurements have allowed us to accurately map the density of states D, and compare it against theoretical predictions. Landau oscillations in D are robust and zero Landau level (LL) can easily be seen at room temperature in moderate fields. The broadening of LLs is strongly affected by charge inhomogeneity that leads to zero LL being broader than other levels

    Giant Spin-Hall Effect induced by Zeeman Interaction in Graphene

    Full text link
    We propose a new approach to generate and detect spin currents in graphene, based on a large spin-Hall response arising near the neutrality point in the presence of external magnetic field. Spin currents result from the imbalance of the Hall resistivity for the spin-up and spin-down carriers induced by Zeeman interaction, and do not involve spin-orbit interaction. Large values of the spin-Hall response achievable in moderate magnetic fields produced by on-chip sources, and up to room temperature, make the effect viable for spintronics applications

    Wavelet Methods in Steganography

    Get PDF
    This paper is devoted to graphic information protection by means of computer steganography using wavelet techniques. The methods of the image processing using digital watermarking are classified. Some research of the structure of the digital image is investigated. In the first solution the steganographic system, which usesa discrete wavelet transform for embedding of grayscale watermark into wavelet coefficients of grayscale container is mоdeled and realized. Stego image is achieved by the inverse discrete wavelet transform. Binarization using halftoning algorithm is considered as a kind of powerful attack to stego image. After binarization attack the extracted watermark was found to have acceptable visual quality. The degradation ofthe embedded digital watermark after binarization is estimated using human visual system. Corresponding conclusions on steganographic system stability are drawn. In the second solution we propose the steganographic scheme which uses the proposed wavelet basis images

    Influence of post-welding processing on continuous corrosion rate and microstructure of welded joints of steel 20 and 30KHGSA

    Get PDF
    Welded joints of structure steels have lower corrosion resistance in comparison to base metal. To increase corrosion resistance of welded joints and heat-affected zone they use longtime and energy-consuming methods of thermal and mechanic processing. The article covers the possibility of using the superplasticity deformation (SD) effect for processing of welded joints. The effect of SD is that metals and alloys with a small grain size (of the order of 10 μm) under conditions of isothermal deformation at a certain temperature acquire the ability for unusually large plastic deformations while reducing the deformation resistance. Grain-boundary sliding during superplasticity provides a high degree of structural homogeneity. If the metal does not have the small grain size, then during isothermal deformation at appropriate temperature the SD effect will not be fully manifested but will cause relaxation of residual micro and macro strains, recrystallization, which can be used during processing of welded joints to ensure their full strength. There have been carried out the investigation of processing methods impact - SD, thermal cycling and influence of post-welding treatment on corrosion rate and microstructure of steels 20 and 30KhGSA. It is shown that after deformation in superplasticity mode there is low corrosion rate and more favorable microstructure in the studied samples of steel. Post-welding processing of welded joints in SD mode provides low tool loads and low energy costs
    corecore